Skip to main content
Log in

Effect of Oxygen on the Oxidation of Methane with Hydrogen Peroxide to Methanol in the Presence of Glutathione-Stabilized Gold Nanoclusters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic activity of glutathione-stabilized gold thiolate nanoclusters (1–2 nm) in the oxidation of methane with H2O2 and air oxygen in aqueous medium at 70°C in 30 atm CH4 was studied. The ratio and yield of the oxidation products CH3OH and CH3OOH depends on the content of H2O2 and oxygen in the reactor. At increased partial pressure of oxygen, the total yield of products increases compared with the total yield of independent oxidations with H2O2 or O2 at 5 atm of air, but decreases at 10 atm. A molecular mechanism of methane oxidation was proposed, which describes well the kinetic curves of accumulation and consumption of CH3OH and CH3OOH and the effect of oxygen on their yield. A molecular model of active site was proposed based on the literature data about the structure of glutathione-stabilized Au25 clusters and the results of quantum chemical modeling. The experiments with re-introduction of the gas phase and renewal of the H2O2 content demonstrated 100% conservation of the catalytic activity. The yield of CH3OH reached 60 mol per mole of Au25 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ravi, M., Ranocchiari, M., and van Bokhoven, J.A., Angew. Chem., Int. Ed., 2017, vol. 56, no. 52, p. 16464.

    Article  CAS  Google Scholar 

  2. Zakaria, Z. and Kamarudin, S.K., Renewable Sustainable Energy Rev., 2016, vol. 65, p. 250.

    Article  CAS  Google Scholar 

  3. Gesser, H.D., Hunter, N.R., and Prakash, C.B., Chem. Rev., 1985, vol. 85, no. 4, p. 235.

    Article  CAS  Google Scholar 

  4. Shilov, A.E. and Shul’pin, G.B., Chem. Rev., 1997, vol. 97, no. 8, p. 2879.

    Article  CAS  PubMed  Google Scholar 

  5. Otsuka, K. and Wang, Y., Appl. Catal., A, 2001, vol. 222, nos. 1–2, p. 145.

  6. Raynes, S., Shah, M.A., and Taylor, R.A., Dalton. Trans., 2019, vol. 48, p. 10364.

    Article  CAS  PubMed  Google Scholar 

  7. Gunsalus, N.J., Koppaka, A., Park, S.H., Bischof, S.M., Hashiguchi, B.G., and Periana, R.A., Chem. Rev., 2017, vol. 117, no. 13, p. 8521.

    Article  CAS  PubMed  Google Scholar 

  8. Cui, W.G., Zhang, G.Y., Hu, T.L., and Bu, X.H., Coord. Chem. Rev., 2019, vol. 387, p. 79.

    Article  CAS  Google Scholar 

  9. Bao, J., Yang, G.H., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2019, vol. 9, no. 4, p. 3026.

    Article  CAS  Google Scholar 

  10. Conley, B.L., Tenn, W.J., Young, K.J.H., Ganesh, S.K., Meier, S.K., Ziatdinov, V.R., Mironov, O., Oxgaard, J., Gonzales, J., Goddard, W.A., and Periana, R.A., J. Mol. Cat. A: Chem., 2006, vol. 251, p. 8.

    Article  CAS  Google Scholar 

  11. Chepaikin, E.G., Menchikova, G.N., and Pomogailo, S.I., Russ. Chem. Bull., 2019, vol. 68, p. 1465.

    Article  CAS  Google Scholar 

  12. Haruta, M., Chem. Rec., 2003, vol. 3, no. 2, p. 75.

    Article  CAS  PubMed  Google Scholar 

  13. Haruta, M., Gold Bull., 2004, vol. 37, nos. 1–2, p. 27.

    Article  CAS  Google Scholar 

  14. Hashmi, A.S.K., Blanco, M.C., Fischer, D., and Bats, J.W., Eur. J. Org. Chem., 2006, vol. 2006, p. 1387.

    Article  CAS  Google Scholar 

  15. Yamazoe, S., Koyasu, K., and Tsukuda, T., Acc. Chem. Res., 2014, vol. 47, no. 3, p. 816.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, B., Kaziz, S., Li, H., Hevia, M.G., Wodka, D., Mazet, C., Bürgi, T., and Barrabés, N., J. Phys. Chem., 2015, vol. 119, no. 20, p. 11193.

    CAS  Google Scholar 

  17. Li, G. and Jin, R.C., RSC Catal. Ser., 2014, no. 18, p. 27.

  18. Nasaruddin, R.R., Chen, T.K., Yan, N., and Xie, J.P., Coord. Chem. Rev., 2018, vol. 368, p. 60.

    Article  CAS  Google Scholar 

  19. Chen, Y.X., Zeng, C.J., and Jin, R.C., SPR-Catal., 2016, vol. 28, p. 51.

    Google Scholar 

  20. Zhu, Y., Qian, H.F., Zhu, M.Z., and Jin, R.C., Adv. Mater., 2010, vol. 22, no. 17, p. 1915.

    Article  CAS  PubMed  Google Scholar 

  21. Taketoshi, A. and Haruta, M., Chem. Lett., 2014, vol. 43, p. 380.

    Article  CAS  Google Scholar 

  22. Yoskamtorn, T., Yamazoe, S., Takahata, R., Nishigaki, J., Thivasasith, A., Limtrakul, J., and Tsukuda, T., ACS Catal. 2014, vol. 4, no. 10, p. 3696.

    Article  CAS  Google Scholar 

  23. Zhu, Y., Qian, H.F., and Jin, R.C., J. Mater. Chem., 2011, vol. 21, p. 6793.

    Article  CAS  Google Scholar 

  24. Zhu, Y., Qian, H., Drake, B.A., and Jin, R., Angew. Chem., Int. Ed., 2010, vol. 49, no. 7, p. 1295.

    Article  CAS  Google Scholar 

  25. Nasaruddin, R.R., Chen, T.K., Yan, N., and Xie, J.P., Coord. Chem. Rev., 2018, vol. 368, p. 60.

    Article  CAS  Google Scholar 

  26. Yan, Z., Huifeng, Q., and Rongchao, J., J. Mater. Chem., 2011, vol. 21, p. 6793.

    Article  CAS  Google Scholar 

  27. Zhang, B., Fang, J., Li, J., Lau, J.J., Mattia, D., Zhong, Z., Xie, J., and Yan, N., Chem. Asian. J., 2016, vol. 11, no. 4, p. 532.

    Article  CAS  PubMed  Google Scholar 

  28. Agarwal, N., Freakley, S.J., McVicker, R.U., Althahban, S.M., Dimitratos, N., He, Q., Morgan, D.J., Jenkins, R.L., Willock, D.J., Taylor, S.H., Kiely, Ch.J., and Hutchings, G.J., Science, 2017, vol. 358, no. 6360, p. 223.

    Article  CAS  PubMed  Google Scholar 

  29. Cai, X., Saranya, G., Shen, K., Chen, M., Si, R., Ding, W., and Zhu, Y., Angew. Chem., Int. Ed., 2019, vol. 58, p. 9964.

    Article  CAS  Google Scholar 

  30. Negishi, Y., Nobusada, K., and Tsukuda, T., J. Am. Chem. Soc., 2005, vol. 127, no. 14, p. 5261.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, M., Lanni, E., Garg, N., Bier, M.E., and Jin, R., J. Am. Chem. Soc., 2008, vol. 130, no. 4, p. 1138.

    Article  CAS  PubMed  Google Scholar 

  32. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.

    Article  CAS  PubMed  Google Scholar 

  33. Dyall, K.G., J. Chem. Phys., 1994, vol. 100, p. 2118.

    Article  CAS  Google Scholar 

  34. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  35. Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116.

    Article  CAS  Google Scholar 

  36. Wang, H. and Bozzelli, J.W., J. Chem. Eng. Data, 2016, vol. 61, no. 5, p. 1836.

    Article  CAS  Google Scholar 

  37. Saliba, N., Parker, D.H., and Koel, B.E., Surf. Sci., 1998, vol. 410, nos. 2–3, p. 270.

    Article  CAS  Google Scholar 

  38. Molecular Spectra and Molecular Structure. IV Constants of Diatomic Molecules, Huber, K.P. and Herzberg, G., Eds., New York: Van Nostrand Reinhold, 1979, p. 732.

    Google Scholar 

  39. Staykov, A., Miwa, T., and Yoshizawa, K., J. Catal., 2018, vol. 364, no. 13, p. 141.

    Article  CAS  Google Scholar 

  40. Coperet, C., Chem. Rev., 2010, vol. 110, no. 2, p. 656.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Z. and Jin, R., ACS Nano., 2009, vol. 3, no. 7, p. 2036.

    Article  CAS  PubMed  Google Scholar 

  42. Giguere, P.A. and Liu, L.D., Can. J. Chem., 1957, vol. 35, no. 4, p. 283.

    Article  CAS  Google Scholar 

  43. Higaki, T., Liu, C., Chen, Y., Zhao, S., Zeng, C., Jin, R., Wang, S., Rosi, N.L., and Jin, R., J. Phys. Chem. Lett., 2017, vol. 8, no. 4, p. 866.

    Article  CAS  PubMed  Google Scholar 

  44. Rosca, D.A., Wright, J.A., Hughes, D.L., and Bochmann, M., Nat. Commun., 2013, vol. 4, p. 2167.

    Article  PubMed  CAS  Google Scholar 

  45. Rosca, D.A., Wright, J.A., Hughes, D.L., and Bochmann, M., Theoretical study of mechanism of H2O2 decomposition, catalyzed with gold cluster Au25(SCH3)12, Tez. dokl. XXI Mendeleevskogo s’ezda po obshchei i prikladnoi khimii (Proc. XXI Mendeleev Workshop on General and Applied Chemistry), St. Petersburg, 2019, vol. 1, p. 248.

  46. Yuan, Q., Deng, W.P., Zhang, Q.H., and Wang, Y., Adv. Synt. Catal., 2007, vol. 349, no. 7, p. 1199.

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed under government contract (state registration no. АААА-А19-119071190045-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Shestakov.

Additional information

Translated by L. Smolina

Abbreviations: NP, nanoparticle; GSH, glutathione; Au NCs, gold nanoclusters; DLS, dynamic light scattering; XRD, X-ray diffraction analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovanova, S.A., Sadkov, A.P. & Shestakov, A.F. Effect of Oxygen on the Oxidation of Methane with Hydrogen Peroxide to Methanol in the Presence of Glutathione-Stabilized Gold Nanoclusters. Kinet Catal 61, 740–749 (2020). https://doi.org/10.1134/S0023158420040060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420040060

Keywords:

Navigation