Skip to main content
Log in

Kinetics and mechanism of gold anode corrosion in a weakly basic aqueous solution of hexamethylenetetramine (urotropine)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Electrochemical corrosion of a gold anode in a weakly basic aqueous solution of hexamethylenetetramine (urotropine) was studied in the galvanostatic mode at various currents. The formation of a compact gold deposit as dendrites on the cathode and colloidal gold nanoparticles in the electrolyte was detected by scanning and transmission electron microscopy. The kinetics of anode corrosion was studied by the gravimetric measurements of the loss in weight of the gold anode and the increase in the mass of the cathode over time. By cyclic voltammetry, it was shown that a gold—urotropine complex can be formed at the anode and subsequently migrate to the solution to be reduced at the cathode. After electrolysis, urotropine was isolated from the electrolyte in the unchanged form

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. I. d. S. Maia, V. M. Deflon, U. Abram, Future Med. Chem., 2014, 6, 1515; DOI: https://doi.org/10.4155/fmc.14.87.

    Article  CAS  Google Scholar 

  2. I. Ott, Coord. Chem. Rev., 2009, 253, 1670; DOI: https://doi.org/10.1016/j.ccr.2009.02.019.

    Article  CAS  Google Scholar 

  3. H. Goitia, Y. Nieto, M. D. Villacampa, C. Kasper, A. Laguna, M. C. Gimeno, Organometallics, 2013, 32, 6069; DOI: https://doi.org/10.1021/om400633z.

    Article  CAS  Google Scholar 

  4. B. Bertrand, A. Casini, Dalton Trans., 2014, 43, 4209; DOI: https://doi.org/10.1039/C3DT52524D.

    Article  CAS  Google Scholar 

  5. T. Zou, C. T. Lum, C.-N. Lok, J.-J. Zhang, C.-M. Che, Chem. Soc. Rev., 2015, 44, 8786; DOI: https://doi.org/10.1039/C5CS00132C.

    Article  CAS  Google Scholar 

  6. R. Visbal, V. Fernández-Moreira, I. Marzo, A. Laguna, M. C. Gimeno, Dalton Trans., 2016, 45, 15026; DOI: https://doi.org/10.1039/C6DT02878K.

    Article  CAS  Google Scholar 

  7. C. Yeo, K. Ooi, E. Tiekink, Molecules, 2018, 23, 1410; DOI: https://doi.org/10.3390/molecules23061410.

    Article  Google Scholar 

  8. O. Crespo, M. C. Gimeno, P. G. Jones, A. Laguna, J. M. López-de-Luzuriaga, M. Monge, J. L. Pérez, M. A. Ramón, Inorg. Chem., 2003, 42, 2061; DOI: https://doi.org/10.1021/ic0259843.

    Article  CAS  Google Scholar 

  9. O. Crespo, M. C. Gimeno, A. Laguna, C. Larraz, M. D. Villacampa, Chem.—Eur. J., 2006, 13, 235; DOI: https://doi.org/10.1002/chem.200600566.

    Article  Google Scholar 

  10. R. Czerwieniec, T. Hofbeck, O. Crespo, A. Laguna, M. C. Gimeno, H. Yersin, Inorg. Chem., 2010, 49, 3764; DOI: https://doi.org/10.1021/ic902325n.

    Article  CAS  Google Scholar 

  11. A. S. K. Hashmi, G. J. Hutchings, Angew. Chem., Int. Ed., 2006, 45, 7896; DOI: https://doi.org/10.1002/anie.200602454.

    Article  Google Scholar 

  12. A. S. K. Hashmi, Chem. Rev., 2007, 107, 3180; DOI: https://doi.org/10.1021/cr000436x.

    Article  CAS  Google Scholar 

  13. A. Fürstner, P. W. Davies, Angew. Chem., Int. Ed., 2007, 46, 3410; DOI: https://doi.org/10.1002/anie.200604335.

    Article  Google Scholar 

  14. Z. Li, Brouwer, C. He, Chem. Rev., 2008, 108, 3239; DOI: https://doi.org/10.1021/cr0684341.

    Article  CAS  Google Scholar 

  15. D. Garayalde, C. Nevado, Beilstein J. Org. Chem., 2011, 7, 767; DOI: https://doi.org/10.3762/bjoc.7.87.

    Article  CAS  Google Scholar 

  16. M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev., 2012, 41, 2448; DOI: https://doi.org/10.1039/C1CS15279C.

    Article  CAS  Google Scholar 

  17. I. J. B. Lin, C. S. Vasam, Can. J. Chem., 2005, 83, 812; DOI: https://doi.org/10.1139/v05-087.

    Article  CAS  Google Scholar 

  18. M. Aliaga-Lavrijsen, R. P. Herrera, M. D. Villacampa, M. C. n Gimeno, ASC Omega, 2018, 3, 9805; DOI: https://doi.org/10.1021/acsomega.8b01352.

    Article  CAS  Google Scholar 

  19. D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev., 2008, 108, 3351; DOI: https://doi.org/10.1021/cr068430g.

    Article  CAS  Google Scholar 

  20. S. Gukathasan, S. Parkin, S. G. Awuah, Inorg. Chem., 2019, 58, 9326; DOI: https://doi.org/10.1021/acs.inorgchem.9b01031.

    Article  CAS  Google Scholar 

  21. S. S. Al-Jaroudi, M. Monim-ul-Mehboob, M. Altaf, A. A. Al-Saadi, M. I. M. Wazeer, S. Altuwaijri, A. A. Isab, Biometals, 2014, 27, 1115; DOI: https://doi.org/10.1007/s10534-014-9771-2.

    Article  CAS  Google Scholar 

  22. B. Petrovic, S. Radisavljevic, Front. Chem., 2020, 8, 379; DOI: https://doi.org/10.3389/fchem.2020.00379.

    Article  Google Scholar 

  23. L. V. Antonova, T. E. Busygina, Vestn. Tekhnol. Un-ta [Bull. Technol. Univ.], 2016, 19, 5 (in Russian).

    CAS  Google Scholar 

  24. A. P. Simakova, M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2014, 88, 331; DOI: https://doi.org/10.1134/S0036024414020241.

    Article  CAS  Google Scholar 

  25. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2016, 90, 1903; DOI: https://doi.org/10.1134/S0036024416090284.

    Article  CAS  Google Scholar 

  26. M. D. Vedenyapina, G. Ts. Ubushieva, V. V. Kuznetsov, N. N. Makhova, A. A. Vedenyapin, Russ. J. Phys. Chem. A, 2016, 90, 2312; DOI: https://doi.org/10.1134/S0036024416110297.

    Article  CAS  Google Scholar 

  27. M. D. Vedenyapina, V. V. Kuznetsov, D. I. Rodikova, N. N. Makhova, A. A. Vedenyapin, Mendeleev Commun., 2018, 28, 181; DOI: https://doi.org/10.1016/j.mencom.2018.03.024.

    Article  CAS  Google Scholar 

  28. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. Chem. Bull., 2020, 69, 1884; DOI: https://doi.org/10.1007/s11172-020-2974-5.

    Article  CAS  Google Scholar 

  29. M. D. Vedenyapina, V. V. Kuznetzov, A S. Dmitrenok, M. E. Minyaev, N. N. Makhova, M. M. Kazakova, Russ. Chem. Bull., 2021, 70, 735; DOI: https://doi.org/10.1007/s11172-021-3144-0.

    Article  CAS  Google Scholar 

  30. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. J. Phys. Chem. A, 2019, 93, 466; DOI: https://doi.org/10.1134/S0036024419020304.

    Article  CAS  Google Scholar 

  31. M. D. Vedenyapina, V. V. Kuznetsov, N. N. Makhova, D. I. Rodikova, Russ. Chem. Bull., 2019, 68, 1997; DOI: https://doi.org/10.1007/s11172-019-2658-1.

    Article  CAS  Google Scholar 

  32. E. J. Laviron, Electroanal. Chem. Interf. Electrochem., 1979, 101, 19; DOI: https://doi.org/10.1016/S0022-0728(79)80075-3.

    Article  CAS  Google Scholar 

  33. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy, V. P. Ananikov, Russ. Chem. Rev., 2013, 82, 648; DOI: https://doi.org/10.1070/RC2013v082n07ABEH004413.

    Article  Google Scholar 

  34. A. S. Kashin, V. P. Ananikov, Russ. Chem. Bull., 2011, 60, 2602; DOI: https://doi.org/10.1007/s11172-011-0399-x.

    Article  CAS  Google Scholar 

  35. Y. Shen, S. Hue, Y. Zhao, Q. Zhu, Z. Tao, Chin. Sci. Bull., 2003, 48, 2694; DOI: https://doi.org/10.1007/BF02901758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Vedenyapina.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 52–58, January, 2022.

The authors are grateful to the Department of Structural Studies of the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, for electron microscopy examination of the samples.

No human or animal subjects were used in this study.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedenyapina, M.D., Kulaishin, S.A., Kuznetsov, V.V. et al. Kinetics and mechanism of gold anode corrosion in a weakly basic aqueous solution of hexamethylenetetramine (urotropine). Russ Chem Bull 71, 52–58 (2022). https://doi.org/10.1007/s11172-022-3375-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3375-8

Key words

Navigation