Skip to main content

Advertisement

Log in

Crystal structure simulation and estimation of the cocrystallization energy for [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine-4,6-dioxide with nitrobenzenes

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structure of [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine-4,6-dioxide (FTDO) cocrystals with nitrobenzenes at the ratio of components 1:1 was simulated using the quantum chemical and Atom-Atom potentials methods. The optimum crystal packings and the main crystal forming interactions were described. The cocrystallization energies were calculated, and the energy preference for the formation of cocrystalline forms of FTDO with nitrobenzene, 1,4-dinitro-benzene, and trinitrobenzene is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, J. M. Shreeve, CrystEngComm, 2016, 18, 6124; DOI: https://doi.org/10.1039/c6ce01239f.

    Article  CAS  Google Scholar 

  2. V. P. Zelenov, N. M. Baraboshkin, D. V. Khakimov, N. V. Muravyev, D. B. Meerov, I. A. Troyan, T. S. Pivina, A. V. Dzyabchenko, I. V. Fedyanin, CrystEngComm, 2020, 22, 4823; DOI: https://doi.org/10.1039/d0ce00639d.

    Article  CAS  Google Scholar 

  3. O. Bolton, A. J. Matzger, Angew. Chem., Int. Ed., 2011, 50, 8960; DOI: https://doi.org/10.1002/anie.201104164.

    Article  CAS  Google Scholar 

  4. N. Liu, B. Duan, X. Lu, Q. Zhang, M. Xu, H. Mo, B. Wang, CrystEngComm, 2019, 21, 7271; DOI: https://doi.org/10.1039/c9ce01221d.

    Article  CAS  Google Scholar 

  5. A. M. Churakov, S. L. Loffe, V. A. Tartakovsky, Mendeleev Commun., 1995, 6, 227; DOI: https://doi.org/10.1016/s0959-9436(95)71557-7.

    Article  Google Scholar 

  6. V. P. Zelenov, A. A. Lobanova, S. V. Sysolyatin, N. V. Sevodina, Russ. J. Org. Chem., 2013, 49, 455; DOI: https://doi.org/10.1134/S107042801303024X.

    Article  CAS  Google Scholar 

  7. V. P. Zelenov, M. E. Minyaev, Russ. Chem. Bull., 2021, 70, 369; DOI: https://doi.org/10.1007/S11172-021-3094-6.

    Article  CAS  Google Scholar 

  8. V. A. Teselkin, Combust. Explos. Shock Waves, 2009, 45, 632; DOI: https://doi.org/10.1007/s10573-009-0076-7.

    Article  Google Scholar 

  9. V. G. Kiselev, N. P. Gritsan, V. E. Zarko, P. I. Kalmykov, V. A. Shandakov, Combust. Explos. Shock Waves, 2007, 43, 562; DOI: https://doi.org/10.1007/s10573-007-0074-6.

    Article  Google Scholar 

  10. N. M. Baraboshkin, V. P. Zelenov, A. V. Dzyabchenko, I. V. Fedyanin, T. S. Pivina, J. Mol. Struct., 2019, 1190, 135; DOI: https://doi.org/10.1016/j.molstruc.2019.04.037.

    Article  CAS  Google Scholar 

  11. A. S. Zharkov, P. I. Kalmykov, Y. N. Burtsev, N. P. Kuznetsova, I. A. Merzhanov, N. V. Chukanov, V. V. Zakharov, G. V. Romanenko, K. A. Sidorov, V. E. Zarko, Russ. Chem. Bull., 2014, 63, 1785; DOI: https://doi.org/10.1007/s11172-014-0668-6.

    Article  CAS  Google Scholar 

  12. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Russ. Chem. Bull., 2020, 69, 212; DOI: https://doi.org/10.1007/s11172-020-2748-0.

    Article  CAS  Google Scholar 

  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  14. A. V. Dzyabchenko, Russ. J. Phys. Chem. A, 2008, 82, 758; DOI: https://doi.org/10.1134/S0036024408050129.

    Article  CAS  Google Scholar 

  15. D. S. Coombes, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop., 1996, 73, 117; DOI: https://doi.org/10.1080/13642819608239117.

    CAS  Google Scholar 

  16. V. K. Belsky, O. N. Zorkaya, P. M. Zorky, Acta Crystallogr. Sect. A, 1995, 51, 473; DOI: https://doi.org/10.1107/S0108767394013140.

    Article  Google Scholar 

  17. D. V. Khakimov, A. V. Dzyabchenko, T. S. Pivina, Propellants, Explos. Pyrotech., 2019, 44, 1528; DOI: https://doi.org/10.1002/prep.201900252.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Baraboshkin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences O. M. Nefedov on the occasion of his 90th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 38–43, January, 2022.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 19-33-90230) using resources of the MBC-100K supercomputer of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

No human or animal subjects were used in this research.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraboshkin, N.M., Khakimov, D.V. & Pivina, T.S. Crystal structure simulation and estimation of the cocrystallization energy for [1,2,5]oxadiazolo[3,4-e][1,2,3,4]tetrazine-4,6-dioxide with nitrobenzenes. Russ Chem Bull 71, 38–43 (2022). https://doi.org/10.1007/s11172-022-3373-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-022-3373-x

Key words

Navigation