Skip to main content
Log in

Synthesis and antimicrobial activity of silicon—titanium—zinc- and silicon—titanium—boron-containing glycerohydrogels

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Novel pharmacologically active silicon—titanium—zinc- and silicon—titanium—boron-containing glycerohydrogels were synthesized by the sol—gel method using silicon, titanium, zinc, and boron glycerolates as biocompatible precursors. The compositions and structural features of the hydrogels were studied by transmission electron microscopy, scanning electron microscopy, IR spectroscopy, atomic emission spectrometry, and elemental analysis methods. The disperse phase and liquid water—glycerol medium of the hydrogels were isolated by cold exhaustive extraction with ethanol and characterized. The 3D polymeric network of the gels is formed by the products of hydrolysis and subsequent (co)condensation of silicon-/silicon—boron-containing precursors. Titanium and zinc glycerolates undergo no hydrolytic transformations under gelation conditions and exist in the cells of the 3D polymeric network in the form of amorphous nanoparticles that are not linked to the network by covalent bonds. Models of the structures were proposed. The gels are characterized by antimicrobial activity, which is more pronounced for the silicon—titanium—boron-containing gel, and they can be considered as promising drugs for topical treatment prepared by the simple, environmentally friendly, and cost-effective method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench, Sol—Gel Silica: Properties, Processing, and Technology Transfer, Noyes Publications, New Jersey, 1998, 177 pp.

    Google Scholar 

  2. D. Levy, M. Zayat, The Sol—Gel Handbook. Vol. 1: Synthesis and Processing, Wiley—VCH Verlag, Weinheim, 2015, 1616 pp.

    Book  Google Scholar 

  3. G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim, J. C. Knowles, Prog. Mater. Sci., 2016, 77, 1.

    Article  CAS  Google Scholar 

  4. K. Zheng, A. R. Boccaccini, Adv. Colloid Interface Sci., 2017, 249, 363.

    Article  CAS  Google Scholar 

  5. C. J. Brinker, G. W. Scherer, Sol—Gel Science: the Physics and Chemistry of Sol—Gel Processing, Academic Press, Boston, 2013, 908 pp.

    Google Scholar 

  6. L. Klein, M. Aparicio, A. Jitianu, Handbook of Sol—Gel Science and Technology, Springer International Publishing, Cham, 2018, 3789 pp.

    Book  Google Scholar 

  7. A. C. Pierre, Introduction to Sol—Gel Processing, Springer International Publishing, Cham, 2020, 701 pp.

    Book  Google Scholar 

  8. E. S. Dolinina, A. S. Kraev, E. V. Parfenyuk, Mendeleev Commun., 2020, 30, 812.

    Article  CAS  Google Scholar 

  9. T. Coradin, M. Boissiere, J. Livage, Curr. Med. Chem., 2006, 13, 99.

    Article  CAS  Google Scholar 

  10. F. Branda, Advances in Nanocomposites. Synthesis, Characterization and Industrial Application, Ed. B. Reddy, IntechOpen, London, 2011, 966 pp.

  11. M. Guglielmi, G. Kickelbick, A. Martucci, Sol—Gel Nanocomposites, Springer—Verlag, New York, 2014, 227 pp.

    Book  Google Scholar 

  12. O. L. Evdokimova, F. G. Svensson, A. V. Agafonov, S. Håkansson, G. A. Seisenbaeva, V. G. Kessler, Nanomaterials, 2018, 8, 228.

    Article  Google Scholar 

  13. G. Pavoski, D. L. S. Badisserotto, T. Maraschin, L. F. W. Brum, C. dos Santos, J. H. Z. dos Santos, A. Brandelli, G. B. Galland, Eur. Polym. J., 2019, 117, 38.

    Article  CAS  Google Scholar 

  14. Y. Yao, L. Shen, A. Wei, T. Wang, S. Chen, J. Sol—Gel Sci. Technol., 2019, 89, 651.

    Article  CAS  Google Scholar 

  15. O. I. Timaeva, I. I. Pashkin, G. M. Kuz’micheva, N. V. Sadovskaya, Mendeleev Commun., 2019, 29, 646.

    Article  CAS  Google Scholar 

  16. T. G. Khonina, A. P. Safronov, E. V. Shadrina, M. V. Ivanenko, A. I. Suvorova, O. N. Chupakhin, J. Colloid Interface Sci., 2012, 365, 81.

    Article  CAS  Google Scholar 

  17. T. G. Khonina, A. P. Safronov, M. V. Ivanenko, E. V. Shadrina, O. N. Chupakhin, J. Mater. Chem. B, 2015, 3, 5490.

    Article  CAS  Google Scholar 

  18. M. A. Brook, Y. Chen, K. Guo, Z. Zhang, J. D. Brennan, J. Mater. Chem., 2004, 14, 1469.

    Article  CAS  Google Scholar 

  19. D. Brandhuber, V. Torma, C. Raab, H. Peterlik, A. Kulak, N. Husing, Mater. Chem., 2005, 17, 4262.

    Article  CAS  Google Scholar 

  20. Yu. A. Shchipunov, T. Yu. Karpenko, A. V. Krekoten, I. V. Postnova, J. Colloid Interface Sci., 2005, 287, 373.

    Article  CAS  Google Scholar 

  21. M. V. Ivanenko, T. G. Khonina, O. N. Chupakhin, L. P. Larionov, R. R. Sakhautdinova, A. P. Safronov, Russ. Chem. Bull., 2012, 61, 2163.

    Article  CAS  Google Scholar 

  22. O. N. Chupakhin, A. N. Bondarev, I. N. Shtan’ko, T. G. Khonina, E. V. Shadrina, E. A. Bogdanova, L. P. Larionov, Russ. Chem. Bull., 2014, 63, 1219.

    Article  CAS  Google Scholar 

  23. O. N. Chupakhin, T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Larchenko, L. P. Larionov, M. S. Karabanalov, Russ. Chem. Bull., 2017, 66, 558.

    Article  CAS  Google Scholar 

  24. T. G. Khonina, O. N. Chupakhin, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, V. V. Permikin, E. V. Shadrina, E. Yu. Nikitina, L. P. Larionov, Russ. Chem. Bull., 2019, 68, 1621.

    Article  CAS  Google Scholar 

  25. M. Y. Cheong, A. H. Hazimah, I. Rosnah, A. A. H. Zafarizal, J. Saudi Chem. Soc., 2015, 21, 643.

    Article  Google Scholar 

  26. T. G. Khonina, M. V. Ivanenko, O. N. Chupakhin, A. P. Safronov, E. A. Bogdanova, M. S. Karabanalov, V. V. Permikin, L. P. Larionov, L. I. Drozdova, Eur. J. Pharm. Sci., 2017, 107, 197.

    Article  CAS  Google Scholar 

  27. Pat. RF 2417102; Byul. Izobret.[Invention’s Bulletin], 2017, 16 (in Russian).

  28. Pat. RF 2671512; Byul. Izobret.[Invention’s Bulletin], 2018, 31 (in Russian).

  29. Pat. RF 2707278; Byul. Izobret.[Invention’s Bulletin], 2019, 33 (in Russian).

  30. T. G. Khonina, N. V. Kungurov, N. V. Zilberberg, N. P. Evstigneeva, M. M. Kokhan, A. I. Polishchuk, E. V. Shadrina, E. Yu. Nikitina, V. V. Permikin, J. Sol—Gel Sci. Tech., 2020, 95, 682.

    Article  CAS  Google Scholar 

  31. C. Chiappe, F. Signori, G. Valentini, L. Marchetti, C. S. Pomelli, F. Bellina, J. Phys. Chem. B, 2010, 114, 5082.

    Article  CAS  Google Scholar 

  32. E. Yu. Larchenko, T. G. Khonina, E. V. Shadrina, A. V. Pestov, O. N. Chupakhin, N. V. Men’shutina, A. E. Lebedev, D. D. Lovskaya, L. P. Larionov, S. A. Chigvintsev, Russ. Chem. Bull., 2014, 63, 1225.

    Article  CAS  Google Scholar 

  33. J. Jain, S. Arora, J. M. Rajwade, P. Omray, S. Khandelwal, K. M. Paknikar, Mol. Pharmaceutics, 2009, 6, 1388.

    Article  CAS  Google Scholar 

  34. M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal., 2016, 6, 71.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Khonina.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. N. Charushin on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 967–974, May, 2021.

The studies were carried out using the equipment of the Center for Joint Use “Spectroscopy and Analysis of Organic Compounds” of the I. Ya. Postovsky Institute of Organic Synthesis (Ural Branch of the Russian Academy of Sciences) and Ural Federal University (Laboratory for Modern Methods of Analysis and Properties of Materials and Nanomaterials).

This work was carried out in terms of plans of the research work and state assignment for 2021 (state registration No. AAAA-A19-119011790134-1). The pharmacological studies were carried out in terms of the state assignment for 2021 (state registration No. AAAA-A19-119011790130-3).

This work does not involve human participants and animal subjects.

The authors declare that there is no conflict of interest in financial or any other sphere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khonina, T.G., Nikitina, E.Y., Shadrina, E.V. et al. Synthesis and antimicrobial activity of silicon—titanium—zinc- and silicon—titanium—boron-containing glycerohydrogels. Russ Chem Bull 70, 967–974 (2021). https://doi.org/10.1007/s11172-021-3174-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3174-7

Key words

Navigation