Skip to main content
Log in

Computational modeling of structure and magnetic properties of dinuclear di-o-benzoquinone iron complexes with linear polycyclic linkers

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Density functional theory (DFT UTPSSh/6-311++G(d,p)) quantum chemical modeling of geometry, energy and magnetic characteristics of binuclear iron complexes, in which iron atoms coordinated by 2,11-diaza[3.3](2,6)pyridinophane bases are connected by di-o-benzoquinone ligands with acene linkers, was performed. It is established that the energy diff erence between electromeric forms of the studied compounds is determined by the type of the alkyl substituents at the nitrogen atoms of the tetraazamacrocyclic ligand and does not depend on the structure of the polycyclic chain. The possibility of controlling magnetic properties of the molecules of this type by means of external influences is predicted based on the facts that terminal metal-containing fragments are capable of undergoing thermally induced spin-state switching rearrangements, while the singlet-triplet transition of the acene linker can be induced by light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sato, Nat. Chem., 2016, 8, 644.

    Article  CAS  PubMed  Google Scholar 

  2. A. Calzolari, Y. Chen, G. F. Lewis, D. B. Dou gherty, D. Shultz, M. B. Nardelli, J. Phys. Chem. B, 2012, 116, 13141.aaaaaa

    Article  CAS  PubMed  Google Scholar 

  3. V. I. Minkin, Russ. Chem. Bull., 2008, 57, 687.

    Article  CAS  Google Scholar 

  4. K. Senthil, M. Ruben, Coord. Chem. Rev., 2017, 346, 176.

    Article  CAS  Google Scholar 

  5. G. Aromi, P. Gamez, O. Roubeau, in Spin States in Biochemistry and Inorganic Chemistry: Influence on Structure and Reactivity, Eds M. Swart, M. Costas, John Wiley & Sons, Chichester, 2016, pp. 263–296.

  6. V. I. Minkin, A. G. Starikov, Russ. Chem. Bull., 2015, 64, 475.

    Article  CAS  Google Scholar 

  7. Spin-Crossover Materials: Properties and Applications, Ed. M. A. Halcrow, John Wiley & Sons, Chichester, 2013, 564 pp.

    Google Scholar 

  8. R. M. Buchanan, C. G. Pierpont, J. Am. Chem. Soc., 1980, 102, 4951.

    Article  CAS  Google Scholar 

  9. A. V. Piskunov, A. V. Maleeva, A. S. Bogomyakov, G. K. Fukin, Russ. Chem. Bull., 2017, 66, 1618.

    Article  CAS  Google Scholar 

  10. M. G. Chegerev, A. V. Piskunov, A. A. Starikova, S. P. Kubrin, G. K. Fukin, V. K. Cherkasov, G. A. Abakumov, Eur. J. Inorg. Chem., 2018, 1087.

    Google Scholar 

  11. E. N. Nikolaevskaya, E. A. Saverina, A. A. Starikova, A. Farhati, M. A. Kiskin, M. A. Syroeshkin, M. P. Egorov, V. V. Jouikov, Dalton Trans., 2018, 47, 17127.

    Article  CAS  PubMed  Google Scholar 

  12. S. V. Fokin, G. A. Letyagin, G. V. Romanenko, A. S. Bogomyakov, M. V. Petrova, V. A. Morozov, V. I. Ovcharenko, Russ. Chem. Bull., 2018, 67, 61.

    Article  CAS  Google Scholar 

  13. A. V. Piskunov, K. I. Pashanova, A. S. Bogomyakov, I. V. Smolyaninov, A. G. Starikov, G. K. Fukin, Dalton Trans., 2018, 47, 15049.

    Article  CAS  PubMed  Google Scholar 

  14. A. A. Skatova, N. L. Bazyakina, I. L. Fedushkin, A. V. Piskunov, N. O. Druzhkov, A. V. Cherkasov, Russ. Chem. Bull., 2019, 68, 275.

    Article  CAS  Google Scholar 

  15. I. V. Ershova, I. V. Smolyaninov, A. S. Bogomyakov, M. V. Fedin, A. G. Starikov, A. V. Cherkasov, G. K. Fukin, A. V. Piskunov, Dalton Trans., 2019, 48, 10723.

    Article  CAS  PubMed  Google Scholar 

  16. A. V. Piskunov, K. I. Pashanova, I. V. Ershova, A. S. Bogomyakov, A. G. Starikov, G. K. Fukin, Russ. Chem. Bull., 2019, 68, 757.

    Article  CAS  Google Scholar 

  17. A. Dei, A. Feis, G. Poneti, L. Sorace, Inorg. Chim. Acta, 2008, 361, 3842.

    Article  CAS  Google Scholar 

  18. P. Dapporto, A. Dei, G. Poneti, L. Sorace, Chem. — Eur. J., 2008, 14, 10915.

    Article  CAS  PubMed  Google Scholar 

  19. H.-J. Kruger, Coord. Chem. Rev., 2009, 253, 2450.

    Article  CAS  Google Scholar 

  20. M. Graf, G. Wolmershauser, H. Kelm, S. Demeschko, F. Meyer, H.-J. Kruger, Angew. Chem., Int. Ed., 2010, 49, 950.

    Article  CAS  Google Scholar 

  21. A. Dei, L. Sorace, Appl. Magn. Reson., 2010, 38, 139.

    Article  CAS  Google Scholar 

  22. G. K. Gransbury, M.-E. Boulon, S. Petrie, R. W. Gable, R. J. Mulder, L. Sorace, R. Stranger, C. Boskovic, Inorg. Chem., 2019, 58, 4230.

    Article  CAS  PubMed  Google Scholar 

  23. A. J. Simaan, M.-L. Boillot, R. Carrasco, J. Cano, J.-J. Girerd, T. A. Mattioli, J. Ensling, H. Spiering, P. Gutlich, Chem. — Eur. J., 2005, 11, 1779.

    Article  CAS  PubMed  Google Scholar 

  24. S. Floquet, A. J. Simaan, E. Riviere, M. Nierlich, P. Thuery, J. Ensling, P. Gutlich, J.-J. Girerd, M.-L. Boillot, Dalton Trans., 2005, 1734.

    Google Scholar 

  25. C. Enachescu, A. Hauser, J.-J. Girerd, M.-L. Boillot, Chem. Phys. Chem., 2006, 7, 1127.

    Article  CAS  PubMed  Google Scholar 

  26. J.-J. Girerd, M.-L. Boillot, G. Blain, E. Riviere, Inorg. Chim. Acta, 2008, 361, 4012.

    Article  CAS  Google Scholar 

  27. W. Kaszub, M. Buron-Le Cointe, M. Lorenc, M.-L. Boillot, M. Servol, A. Tissot, L. Guerin, H. Cailleau, E. Collet, Eur. J. Inorg. Chem., 2013, 992.

    Google Scholar 

  28. A. Tissot, H. J. Shepherd, L. Toupet, E. Collet, J. Sainton, G. Molnar, P. Guionneau, M.-L. Boillot, Eur. J. Inorg. Chem., 2013, 1001

    Google Scholar 

  29. J. Tao, H. Maruyama, O. Sato, J. Am. Chem. Soc., 2006, 128, 1790.

    Article  CAS  PubMed  Google Scholar 

  30. J. S. Miller, K. S. Min, Angew. Chem., Int. Ed., 2009, 48, 262.

    Article  CAS  Google Scholar 

  31. K. G. Alley, G. Poneti, J. B. Aitken, R. K. Hocking, B. Moubaraki, K. S. Murray, B. F. Abrahams, H. H. Harris, L. Sorace, C. Boskovic, Inorg. Chem., 2012, 51, 3944.

    Article  CAS  PubMed  Google Scholar 

  32. K. G. Alley, G. Poneti, P. S. D. Robinson, A. Nafady, B. Moubaraki, J. B. Aitken, S. C. Drew, C. Ritchie, B. F. Abrahams, R. K. Hocking, K. S. Murray, A. M. Bond, H. H. Harris, L. Sorace, C. Boskovic, J. Am. Chem. Soc., 2013, 135, 8304.

    Article  CAS  PubMed  Google Scholar 

  33. A. Madadi, M. Itazaki, R. W. Gable, B. Moubaraki, K. S. Murray, C. Boskovic, Eur. J. Inorg. Chem., 2015, 4991.

    Google Scholar 

  34. S. Kanegawa, Y. Shiota, S. Kang, K. Takahashi, H. Okajima, A. Sakamoto, T. Iwata, H. Kandori, K. Yoshizawa, O. Sato, J. Am. Chem. Soc., 2016, 138, 14170.

    Article  CAS  PubMed  Google Scholar 

  35. G.-L. Li, S. Kanegawa, Z.-S. Yao, S.-Q. Su, S.-Q. Wu, Y.-G. Huang, S. Kang, O. Sato, Chem. — Eur. J., 2016, 22, 17130.

    Article  CAS  PubMed  Google Scholar 

  36. M. van der Meer, Y. Rechkemmer, F. D. Breitgoff, R. Marx, P. Neugebauer, U. Frank, J. van Slageren, B. Sarkar, Inorg. Chem., 2016, 55, 11944.

    Article  CAS  PubMed  Google Scholar 

  37. V. I. Minkin, A. A. Starikova, A. G. Starikov, Russ. Chem. Bull., 2017, 66, 1543.

    Article  CAS  Google Scholar 

  38. A. G. Starikov, A. A. Tsaturyan, A. A. Starikova, E. A. Gusakov, V. I. Minkin, Russ. Chem. Bull., 2018, 67, 1182.

    Article  CAS  Google Scholar 

  39. A. G. Starikov, A. A. Starikova, M. G. Chegerev, V. I. Minkin, Russ. Chem. Bull., 2019, 68, 725.

    Article  CAS  Google Scholar 

  40. A. A. Starikova, V. I. Minkin, Russ. Chem. Rev., 2018, 87, 1049.

  41. A. A. Starikova, V. I. Minkin, Comput. Theor. Chem., 2018, 1138, 163.

    Article  CAS  Google Scholar 

  42. A. A. Starikova, E. A. Metelitsa, V. I. Minkin, Russ. J. Coord. Chem., 2019, 45, 411.

    Article  CAS  Google Scholar 

  43. K. Katayama, M. Hirotsu, I. Kinoshita, Y. Teki, Dalton Trans., 2014, 43, 13384.

    Article  CAS  PubMed  Google Scholar 

  44. K. Katayama, M. Hirotsu, A. Ito, Y. Teki, Dalton Trans., 2016, 45, 10165.

    Article  CAS  PubMed  Google Scholar 

  45. J. E. Anthony, Chem. Rev., 2006, 106, 5028.

    Article  CAS  PubMed  Google Scholar 

  46. J. E. Anthony, Angew. Chem., Int. Ed., 2008, 47, 452.

    Article  CAS  Google Scholar 

  47. R. Mondal, C. Tonshoff, D. Khon, D. C. Neckers, H. F. Bettinger, J. Am. Chem. Soc., 2009, 131, 14281.

    Article  CAS  PubMed  Google Scholar 

  48. S. S. Zade, M. Bendikov, Angew. Chem., Int. Ed., 2010, 49, 4012.

    Article  CAS  Google Scholar 

  49. G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. Ponce Ortiz, C. J. Gomez-Garcia, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado, M. M. Haley, Nat. Chem., 2016, 8, 753.

    Article  CAS  PubMed  Google Scholar 

  50. M. Nakano, K. Fukuda, B. Champagne, J. Phys. Chem. C., 2016, 120, 1193.

    Article  CAS  Google Scholar 

  51. W. O. Koch, H.-J. Kruger, Angew. Chem., Int. Ed., 1995, 43, 2671.

    Google Scholar 

  52. W. O. Koch, V. Schunemann, M. Gerdan, A. X. Trautwein, H.-J. Kruger, Chem. — Eur. J., 1998, 4, 1255.

    Article  CAS  Google Scholar 

  53. A. A. Starikova, E. A. Metelitsa, A. G. Starikov, Russ. J. Struct. Chem., 2019, 60, 1219.

    Article  CAS  Google Scholar 

  54. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Rana singhe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 (Revision A.03), Gaussian, Inc., Wallingford (CT), 2016.

    Google Scholar 

  55. J. M. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401.

    Article  CAS  PubMed  Google Scholar 

  56. V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys., 2003, 119, 12129.

    Article  CAS  Google Scholar 

  57. A. G. Starikov, A. A. Starikova, V. I. Minkin, Dokl. Chem., 2016, 467, 83.

    Article  CAS  Google Scholar 

  58. A. A. Starikova, M. G. Chegerev, A. G. Starikov, V. I. Minkin, Comp. Theor. Chem., 2018, 1124, 15.

    Article  CAS  Google Scholar 

  59. A. Bannwarth, S. O. Schmidt, G. Peters, F. D. Sonnichsen, W. Thimm, R. Herges, F. Tuczek, Eur. J. Inorg. Chem., 2012, 2776.

    Google Scholar 

  60. J. Cirera, F. Paesani, Inorg. Chem., 2012, 51, 8194.

    Article  CAS  PubMed  Google Scholar 

  61. T. Tezgerevska, E. Rousset, R. W. Gable, G. N. L. Jameson, E. C. Sanudo, A. Starikova, C. Boskovic, Dalton Trans., 2019, 48, 11674.

    Article  CAS  PubMed  Google Scholar 

  62. V. V. Koval, A. G. Starikov, R. M. Minyaev, V. I. Minkin, Dokl. Chem., 2010, 435, 319.

    Article  CAS  Google Scholar 

  63. M. Yu. Antipin, E. P. Ivakhnenko, Yu. V. Koshchienko, P. A. Knyazev, M. S. Korobov, A. V. Chernyshev, K. A. Lyssenko, A. G. Starikov, V. I. Minkin, Russ. Chem. Bull., 2013, 62, 1744.

    Article  CAS  Google Scholar 

  64. V. I. Minkin, A. A. Starikova, A. G. Starikov, Russ. Chem. Bull., 2017, 66, 208.

    Article  CAS  Google Scholar 

  65. L. Noodleman, J. Chem. Phys., 1981, 74, 5737.

    Article  CAS  Google Scholar 

  66. M. Shoji, K. Koizumi, Y. Kitagawa, T. Kawakami, S. Yamanaka, M. Okumura, K. Yamaguchi, Chem. Phys. Lett., 2006, 432, 343.

    Article  CAS  Google Scholar 

  67. Chemcraft, version 1.7, 2013. http://www.chemcraftprog.com.

  68. T. Bally, Nat. Chem., 2010, 2, 165.

    Article  CAS  PubMed  Google Scholar 

  69. A. A. Starikova, A. G. Starikov, V. I. Minkin, Russ. Chem. Bull., 2016, 65, 1464.

    Article  CAS  Google Scholar 

  70. A. A. Starikova, M. G. Chegerev, A. G. Starikov, V. I. Minkin, J. Comput. Chem., 2019, 40, 2284.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Starikova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0203—0211, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starikova, A.A., Chegerev, M.G. & Starikov, A.G. Computational modeling of structure and magnetic properties of dinuclear di-o-benzoquinone iron complexes with linear polycyclic linkers. Russ Chem Bull 69, 203–211 (2020). https://doi.org/10.1007/s11172-020-2747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2747-1

Key words

Navigation