Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 11, pp 2048–2056 | Cite as

Photocatalytic activity of CdS nanocrystals stabilized by a polymer shell and promoted by cobalt and nickel complexes in the reaction of hydrogen evolution

  • Yu. A. Kabachii
  • S. Yu. Kochev
  • S. S. Abramchuk
  • A. S. Golub
  • P. M. Valetskii
  • O. Yu. Antonova
  • Yu. N. Bubnov
  • V. A. Nadtochenko
Full Article
  • 20 Downloads

Abstract

Nanocrystals (NCs) of CdS with oleate surface (NC-1) and octadecyl thiolate surface (NC-2), stabilized by a polycation shell, were doped with nickel bis(2-aminobenzenethiolate) (1), cobalt(III) chlorobis(dimethylglyoximato)(2-mercaptopyridine) (2), and also with 1,2-ethanedithiol and didodecylsulfide clathrochelates of cobalt(II) (3 and 4). The influence of doping on the photocatalytic activity in the hydrogen evolution reaction was investigated. Complex 1 appeared to be the most effective cocatalyst for H2 evolution with the reaction rate increased by the factor of 8—11. Accomodating the complex in a polymer shell yields the best result. The rate of H2 evolution increases monotonically with increasing concentration of this complex until the concentration achieves the ratio of one complex molecule per single NC. It is shown that the chemical composition of the surface has a significant influence on their photocatalytic activity in the hydrogen evolution reaction. The activity of NC-2 is 200 times that of NC-1. The replacement of oleate groups of the latter with sulfide increases the activity of these photocatalysts by a factor of 2000.

Key words

photocatalysis hydrogen evolution reaction nanocrystals cadmium sulfide polymers cobalt complexes nickel complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. А. Оgarev, V. М. Rudoi, О. V. Dementéva, Russ. J. Phys. Chem., 2014, 88, 181.CrossRefGoogle Scholar
  2. 2.
    A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.CrossRefGoogle Scholar
  3. 3.
    A. Das, Z. Han, W. W. Brennessel, P. L. Holland, R. Eisen-berg, ACS Catal., 2015, 5, 1397.CrossRefGoogle Scholar
  4. 4.
    F. Wen, J. Yang, X. Zong, B. Maa, D. Wang, C. Li, J. Catal., 2011, 281, 318.CrossRefGoogle Scholar
  5. 5.
    H. Chen, Z. Sun, S. Ye, D. Lu, P. Du, J. Mater. Chem., A, 2015, 3, 15729.CrossRefGoogle Scholar
  6. 6.
    Yu. A. Kabachii, A. S. Golub, A. S. Goloveshkin, S. S. Abramchuk, A. V. Shapovalov, M. I. Buzin, P. M. Valetskii, S. Yu. Kochev, Russ. Chem. Bull., 2014, 63, 2355.CrossRefGoogle Scholar
  7. 7.
    Yu. A. Kabachii, S. Yu. Kochev, S. S. Abramchuk, P. M. Valetskii, Russ. Chem. Bull., 2016, 65, 414.CrossRefGoogle Scholar
  8. 8.
    Y. Z. Voloshin, A. S. Belov, A. V. Vologzhanina, G. G. Aleksandrov, A. V. Dolganov, V. V. Novikov, O. A. Var-zatskiic, Y. N. Bubnov, Dalton Trans., 2012, 41, 6078.CrossRefGoogle Scholar
  9. 9.
    Yu. A. Kabachii, S. Yu. Kochev, N. D. Lenenko, V. I. Zaikovskii, A. S. Golub, M. Yu. Antipin, P. M. Valetskii, Polym. Sci., Ser. B, 2013, 55, 95.CrossRefGoogle Scholar
  10. 10.
    Yun Ku Jung, Jae Il Kim, Jin-Kyu Lee, J. Am. Chem. Soc, 2010, 132, 178.CrossRefGoogle Scholar
  11. 11.
    F. Wena, J. Yang, X. Zong, B. Maa, D. Wang, C. Li, J. Catal., 2011, 281, 318.CrossRefGoogle Scholar
  12. 12.
    TOPAS 4.2 User Manual, Bruker AXS GmbH, Karlsruhe (Germany), 2009.Google Scholar
  13. 13.
    D. Balzar, in Voigt_Function Model in Diffraction Line Broadening Analysis, Eds R. L. Snyder, J. Fiala, H. J. Bunge, Oxford University Press, New York, 1999.Google Scholar
  14. 14.
    T. Trindale, P. O’Brien, X-m. Zhang, Chem. Mater., 1997, 9, 523.CrossRefGoogle Scholar
  15. 15.
    N. R. Кulish, V. P. Кunets, М. P. Lisitsa, Russ. Phys. Sol. State, 1997, 39, 1667.CrossRefGoogle Scholar
  16. 16.
    G. Q. Xua, B. Liua, S. J. Xub, C. H. Chewa, S. J. Chua, L. M. Gana, J. Phys. Chem. Solids, 2000, 61, 829.CrossRefGoogle Scholar
  17. 17.
    C. M. Chang, K. L. Orchard, B. C. M. Martindale, E. Reis-ner, J. Mater. Chem., A, 2016, 4, 2856.CrossRefGoogle Scholar
  18. 18.
    S. R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S. D. Tilley, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc., 2014, 136, 9854.CrossRefGoogle Scholar
  19. 19.
    А. I. Еfimov, Svoistva neorganicheskikh soedinenii [Proper-ties of Inorganic Compouds], Khimiya, Leningrad, 1983, 392 pp.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yu. A. Kabachii
    • 1
    • 2
  • S. Yu. Kochev
    • 1
    • 2
  • S. S. Abramchuk
    • 1
  • A. S. Golub
    • 1
  • P. M. Valetskii
    • 1
  • O. Yu. Antonova
    • 1
    • 2
  • Yu. N. Bubnov
    • 1
  • V. A. Nadtochenko
    • 2
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations