Skip to main content
Log in

The electronic structure of 5-methylhexa-1,2,4-triene-1,3-diyl, the first representative of highly delocalized triplet ethynylvinylcarbenes, from ESR spectroscopy data and quantum chemical calculations

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The ESR spectrum of the first representative of highly conjugated triplet ethynylvinylcarbenes, 5-methylhexa-1,2,4-triene-1,3-diyl (1), was recorded in solid argon matrix. The zero-field splitting (ZFS) parameters of carbene 1 (D = 0.5054±0.0006 cm−1 and E = 0.0045±0.0002 cm−1) determined from the experimental ESR spectrum are in between the corresponding parameters of ethynylcarbene C3H2 (2) and vinylcarbene C3H4 (3): D(3) < D(1) < D(2) and E(2) < E(1) < E(3). Quantum chemical calculations of the ZFS parameters of 1, 2, and 3 have been carried out for the first time using two DFT-based approaches, RODFT and UDFT. An analysis of the experimental and theoretical ZFS parameters shows that carbene 1 is characterized by a greater extent of delocalization of the spin density of unpaired electrons than carbenes 2 and 3. The characteristic structural fragments of carbene 1 possess the principal features of the electronic structure of both ethynylcarbene (2) and vinylcarbene (3), respectively. Magnetic spin-spin interactions are identical in carbenes 1 and 2. The dominant contribution to D in 1 and 2 results from the one-center spin-spin interactions on carbon atoms in the propynylidene group, which are subjected to strong spin polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. L. Closs, L. Closs, J. Am. Chem. Soc., 1963, 85, 99.

    Article  CAS  Google Scholar 

  2. P. S. Skell, J. Klebe, J. Am. Chem. Soc., 1960, 82, 247.

    Article  CAS  Google Scholar 

  3. R. Walsh, Chem. Soc. Rev., 2005, 34, 714.

    Article  CAS  Google Scholar 

  4. M. S. Baird, Chem. Rev., 2003, 103, 1271.

    Article  CAS  Google Scholar 

  5. M. Nakamura, H. Isobe, E. Nakamura, Chem. Rev., 2003, 103, 1295.

    Article  CAS  Google Scholar 

  6. M. Noro, T. Masuda, A. S. Ichimura, N. Koga, H. Iwamura, J. Am. Chem. Soc., 1994, 116, 6179.

    Article  CAS  Google Scholar 

  7. E. Neyts, A. Bogaerts, R. Gijbels, J. Benedikta, M. C. M. van de Sanden, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, 228, 315.

    Article  CAS  Google Scholar 

  8. F. Leonori, R. Petrucci, E. Segoloni, A. Bergeat, K. M. Hickson, N. Balucani, P. Casavecchia, J. Phys. Chem. A, 2008, 112, 1363.

    Article  CAS  Google Scholar 

  9. J. A. Miller, S. J. Klippenstein, J. Phys. Chem. A, 2003, 107, 2680.

    Article  CAS  Google Scholar 

  10. C. A. Taatjes, S. J. Klippenstein, N. Hansen, J. A. Miller, T. A. Cool, J. Wang, M. E. Law, P. R. Westmoreland, Phys. Chem. Chem. Phys., 2005, 7, 806.

    CAS  Google Scholar 

  11. P. Thaddeus, C. A. Gottlieb, R. Mollaaghababa, J. M. Vrtilek, J. Chem. Soc., Faraday Trans., 1993, 89, 2125.

    Article  CAS  Google Scholar 

  12. R. I. Kaiser, Chem. Rev., 2002, 102, 1309.

    Article  CAS  Google Scholar 

  13. I. W. M. Smith, E. Herbst, Q. Chang, Mon. Not. R. Astron. Soc., 2004, 250, 323.

    Article  Google Scholar 

  14. F. J. Lovas, J. Phys. Chem. Ref. Data, 2004, 33, 177.

    Article  CAS  Google Scholar 

  15. R. A. Seburg, J. T. DePinto, E. V. Patterson, R. J. McMahon, J. Am. Chem. Soc., 1995, 117, 835.

    Article  CAS  Google Scholar 

  16. R. A. Seburg, E. V. Patterson, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc., 1997, 119, 5847.

    Article  CAS  Google Scholar 

  17. R. A. Seburg, E. V. Patterson, R. J. McMahon, J. Am. Chem. Soc., 2009, 131, 9442.

    Article  CAS  Google Scholar 

  18. G. Maier, C. Lautz, S. Senger, Chem.-Eur. J., 2000, 6, 1467.

    Article  CAS  Google Scholar 

  19. P. K. Freeman, J. Org. Chem., 2009, 74, 830 (and references cited therein).

    Article  CAS  Google Scholar 

  20. N. P. Bowling, R. J. Halter, J. A. Hodges, R. A. Seburg, P. S. Thomas, C. S. Simmons, J. F. Stanton, R. J. McMahon, J. Am. Chem. Soc., 2006, 128, 3291.

    Article  CAS  Google Scholar 

  21. P. S. Thomas, N. P. Bowling, R. J. McMahon, J. Am. Chem. Soc., 2009, 131, 8649.

    Article  CAS  Google Scholar 

  22. P. S. Thomas, N. P. Bowling, N. J. Burrman, R. J. McMahon, J. Org. Chem. Soc., 2010, 75, 6372.

    Article  CAS  Google Scholar 

  23. S. E. Boganov, V. I. Faustov, K. N. Shavrin, V. D. Gvozdev, V. M. Promyslov, M. P. Egorov, O. M. Nefedov, J. Am. Chem. Soc., 2009, 131, 14688.

    Article  CAS  Google Scholar 

  24. W. Sander, G. Bucher, S. Wierlacher, Chem. Rev., 1993, 93, 1583.

    Article  CAS  Google Scholar 

  25. E. Wasserman, V. J. Kuck, R. S. Hutton, W. A. Yager, J. Am. Chem. Soc., 1970, 92, 7491.

    Article  CAS  Google Scholar 

  26. T. J. Sears, P. R. Bunker, A. R. W. McKellar, J. Chem. Phys., 1982, 77, 5363.

    Article  CAS  Google Scholar 

  27. R. S. Hutton, M. L. Manion, H. D. Roth, E. Wasserman, J. Am. Chem. Soc., 1974, 96, 4680.

    Article  CAS  Google Scholar 

  28. W. Adam, H. M. Harrer, T. Heidenfelder, T. Kammel, F. Kita, W. M. Nau, C. Sahin, Perkin Trans., 1996, 2085.

  29. E. J. Wasserman, Chem. Phys., 1965, 42, 3739.

    CAS  Google Scholar 

  30. M. Franck-Neumann, P. Geoffroy, J. J. Lohmann, Tetrahedron Lett., 1983, 24, 1775.

    Article  CAS  Google Scholar 

  31. E. Ya. Misochko, A. V. Akimov, V. A. Belov, D. A. Tyurin, Russ. Chem. Bull., Int. Ed., 2007, 56, 438.

    Article  CAS  Google Scholar 

  32. E. Ya. Misochko, A. V. Akimov, V. A. Belov, D. A. Tyurin, D. N. Laikov, J. Chem. Phys., 2007, 127, 084301.

    Article  Google Scholar 

  33. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42.

    Article  CAS  Google Scholar 

  34. R. McWeeny, Y. Mizuno, Proc. R. Soc. London, 1961, 259, 554.

    Article  CAS  Google Scholar 

  35. F. Neese, ORCA — An ab initio, DFT and Semiempirical Program Package, 2.8.02 ed.; (Universität Bonn: Bonn, Germany, February 2011). The program was downloaded from http://www.thch.uni-bonn.de/tc/orca.

    Google Scholar 

  36. S. Sinnecker, F. Neese, J. Phys. Chem. A, 2006, 110, 12267.

    Article  CAS  Google Scholar 

  37. F. Neese, J. Chem. Phys., 2007, 127, 164112.

    Article  Google Scholar 

  38. E. Ya. Misochko, D. V. Korchagin, K. V. Bozhenko, S. V. Chapyshev, S. M. Aldoshin, J. Chem. Phys., 2010, 133, 064101.

    Article  Google Scholar 

  39. A. Schaefer, H. Horn, R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571.

    Article  CAS  Google Scholar 

  40. J. E. Wertz, J. R. Bolton, Electron spin resonance. Elementary theory and practical applications, McGraw-Hill Book Company, New York, 1972.

    Google Scholar 

  41. E. Ya. Misochko, A. V. Akimov, S. V. Chapyshev, J. Chem. Phys., 2008, 128, 124504.

    Article  Google Scholar 

  42. C. Duboc, D. Ganyushin, K. Sivalingam, M.-N. Collomb, F. Neese, J. Phys. Chem. A, 2010, 114, 10750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Ya. Misochko or S. E. Boganov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2138–2145, November, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misochko, E.Y., Akimov, A.V., Masitov, A.A. et al. The electronic structure of 5-methylhexa-1,2,4-triene-1,3-diyl, the first representative of highly delocalized triplet ethynylvinylcarbenes, from ESR spectroscopy data and quantum chemical calculations. Russ Chem Bull 60, 2180–2187 (2011). https://doi.org/10.1007/s11172-011-0336-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0336-z

Key words

Navigation