Skip to main content

Advertisement

Log in

Students’ Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent?

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

It is argued that knowledge about models is an important part of a profound understanding of Nature of Science. Consequently, researchers have developed different ‘levels of understanding’ to analyse students’, teachers’, or experts’ comprehension of this topic. In some approaches, global levels of understanding have been developed which mirror the idea of an understanding of models and modelling as a whole. Opposed to this, some authors have developed levels of understanding for distinct aspects concerning models and modelling in science (i.e. aspect-dependent levels). This points to an important issue for science education research since global conceptualisations might lead to less differentiated assessments and interventions than aspect-dependent ones. To contribute to this issue, the article summarises conceptualisations of both global and aspect-dependent levels of understanding models and modelling that have been developed in science education. Further, students’ understanding of the aspects nature of models, multiple models, purpose of models, testing models, and changing models has been assessed (N = 1,180; 11 to 19 years old; secondary schools; Berlin, Germany). It is discussed to what extent the data support the notion of global or aspect-dependent levels of understanding models and modelling in science. The results suggest that students seem to have a complex and at least partly inconsistent pattern of understanding models. Furthermore, students with high nonverbal intelligence and good marks seem to have a comparatively more consistent and more elaborated understanding of models and modelling than weaker students. Recommendations for assessment in science education research and teaching practice are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acher, A., Arcà, M., & Sanmartí, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91, 398–418.

    Article  Google Scholar 

  • Adúriz-Bravo, A. (2012). A ‘semantic’ view of scientific models for science education. Science & Education. doi:10.1007/s11191-011-9431-7.

    Google Scholar 

  • American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for Science Literacy, Project 2061. New York: Oxford University Press.

    Google Scholar 

  • Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. In M. Khine & I. Saleh (Eds.), Models and modeling (pp. 195–220). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bailer-Jones, D. (2003). When scientific models represent. International Studies in the Philosophy of Science, 17, 59–74.

    Article  Google Scholar 

  • Böckenholt, U. (2004). Comparative judgments as an alternative to ratings: Identifying the scale origin. Psychological Methods, 9, 453–465.

    Article  Google Scholar 

  • Brown, A., & Maydeu-Olivares, A. (2011). Item response modeling of forced-choice questionnaires. Educational and Psychological Measurement, 71, 460–502.

    Article  Google Scholar 

  • Burnham, K., & Anderson, D. (2000). Model selection and inference. New York: Springer.

    Google Scholar 

  • Bybee, R. (2011). Scientfic and engineering practices in K-12 classrooms: Understanding a framework for K-12 science education. The Science Teacher, 78, 34–40.

    Google Scholar 

  • Carey, S., & Smith, C. (1993). On understanding the nature of scientific knowledge. Educational Psychologist, 28, 235–251.

    Article  Google Scholar 

  • Carey, S., Evans, R., Honda, M., Jay, E., & Unger, C. (1989). 'An experiment is when you try it and see if it works': A study of grade 7 students' understanding of the construction of scientific knowledge. International Journal of Science Education, 11, 514–529.

    Google Scholar 

  • Chittleborough, G., & Treagust, D. (2007). The modelling ability of non-major chemistry students and their understanding of the sub-microscopic level. Chemistry Education: Research and Practice in Europe, 8, 274–292.

    Google Scholar 

  • Chittleborough, G., Treagust, D., Mamiala, T., & Mocerino, M. (2005). Students’ perceptions of the role of models in the process of science and in the process of learning. Research in Science and Technological Education, 23, 195–212.

    Article  Google Scholar 

  • Clement, J., & Rea-Ramirez, M. (2008). Model based learning and instruction in science. Dordrecht: Springer.

    Book  Google Scholar 

  • Clough, E., & Driver, R. (1986). A study of consistency in the use of students' conceptual frameworks across different task contexts. Science Education, 70, 473–496.

    Article  Google Scholar 

  • Coll, R., & Lajium, D. (2011). Modeling and the future of science learning. In M. Khine & I. Saleh (Eds.), Models and modeling (pp. 3–21). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Collins, L., & Lanza, S. (2010). Latent class and latent transition analysis. Hoboken: Wiley.

    Google Scholar 

  • Coombs, C. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158.

    Article  Google Scholar 

  • Crawford, B., & Cullin, M. (2004). Supporting prospective teachers’ conceptions of modeling in science. International Journal of Science Education, 26, 1379–1401.

    Article  Google Scholar 

  • Crawford, B., & Cullin, M. (2005). Dynamic assessments of preservice teachers' knowledge of models and modelling. In K. Boersma, M. Goedhart, O. de Jong, & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 309–323). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Danusso, L., Testa, I., & Vicentini, M. (2010). Improving prospective teachers’ knowledge about scientific models and modelling: Design and evaluation of a teacher education intervention. International Journal of Science Education, 32, 871–905.

    Article  Google Scholar 

  • Eisma, J. (2012). Flow visualization and force measurements on a flapping-wing MAV DelFly II in forward flight configuration (Master of Science Thesis). Delft University of Technology, Delft

  • Fleige, J., Seegers, A., Upmeier zu Belzen, A., & Krüger, D. (2012). Förderung von Modellkompetenz im Biologieunterricht. [Fostering model competence in biology education.]. MNU, 65, 19–28.

    Google Scholar 

  • Frigg, R., & Hartmann, S. (2006). Scientific models. In S. Sarkar & J. Pfeifer (Eds.), The philosophy of science. An encyclopedia. Volume 2, N-Z, index (pp. 740–749). New York: Routledge.

    Google Scholar 

  • Fritz, C., Morris, P., & Richler, J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology. General, 141, 2–18.

    Article  Google Scholar 

  • Gericke, N., & Hagberg, M. (2010). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605–623.

    Article  Google Scholar 

  • Gericke, N., Hagberg, M., & Jorde, D. (2012). Upper secondary students’ understanding of the use of multiple models in biology textbooks: The importance of conceptual variation and incommensurability. Research in Science Education. doi:10.1007/s11165-012-9288-z.

    Google Scholar 

  • Giere, R. (1988). Explaining science: A cognitive approach. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. (2006). Scientific perspectivism. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Giesbrecht, F., & Gumpertz, M. (2004). Planning, construction, and statistical analysis of comparative experiments. Hoboken: Wiley.

    Book  Google Scholar 

  • Gilbert, S. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28, 73–79.

    Article  Google Scholar 

  • Gilbert, J. (2004). Models and modelling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130.

    Article  Google Scholar 

  • Gilbert, J., & Boulter, C. (1998). Learning science through models and modelling. In B. Fraser & K. Tobin (Eds.), International handbook of science education. Part one (pp. 53–66). Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Gilbert, J., & Boulter, C. (Eds.). (2000). Developing models in science education. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Gobert, J., & Pallant, A. (2004). Fostering students' epistemologies of models via authentic model-based tasks. Journal of Science Education and Technology, 13, 7–22.

    Article  Google Scholar 

  • Gobert, J., O'Dwyer, L., Horwitz, P., Buckley, B., Levy, S., & Wilensky, U. (2011). Examining the relationship between students' understanding of the nature of models and conceptual learning in Biology, Physics, and Chemistry. International Journal of Science Education, 33, 653–684.

    Article  Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822.

    Article  Google Scholar 

  • Grünkorn, J., Upmeier zu Belzen, A., & Krüger, D. (2011). Design and test of open-ended tasks to evaluate a theoretical structure of model competence. In A. Yarden & G. Carvalho (Eds.), Authenticity in biology education (pp. 53–65). Braga: CIEC, Universidade do Minho.

    Google Scholar 

  • Grünkorn, J., Hänsch, J., Upmeier zu Belzen, A., & Krüger, D. (2012). Determination of students' model competence using open-ended and hands-on tasks. In C. Bruguière, A. Tiberghien, & P. Clément (Eds.), Ebook proceedings of the ESERA 2011 conference. Part 5: Nature of Science, History, Philosophy, Sociology of Science (pp. 38–44). Retrieved from http://www.esera.org/media/ebook/strand5/ebookesera2011_GRUNKORN-05.pdf.

  • Hagenaars, J., & Halman, L. (1989). Searching for ideal types: The potentialities of latent class analysis. European Sociological Review, 5, 81–96.

    Google Scholar 

  • Halloun, I. (2007). Mediated modeling in science education. Science Education, 16, 653–697.

    Article  Google Scholar 

  • Harré, R. (1970). The principles of scientific thinking. London: Macmillan.

    Google Scholar 

  • Harrison, A. (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401–435.

    Article  Google Scholar 

  • Harrison, A., & Treagust, D. (1996). Secondary student's mental models of atoms and molecules: Implications for teaching chemistry. Science Education, 80, 509–534.

    Article  Google Scholar 

  • Heller, K., & Perleth, C. (2000). KFT 4-12+ R: Kognitiver Fähigkeitstest für 4. bis 12. Klassen, Revision. [KFT 4–12 + R: Cognitive abilities test for 4th-12th graders, revision.]. Göttingen: Beltz Test GmbH.

    Google Scholar 

  • Henson, J., Reise, S., & Kim, K. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling, 14, 202–226.

    Article  Google Scholar 

  • Henze, I., Van Driel, J., & Verloop, N. (2007). Science teachers’ knowledge about teaching models and modelling in the context of a new syllabus on public understanding of science. Research in Science Education, 37, 99–122.

    Article  Google Scholar 

  • Hicks, L. (1970). Some properties of ipsative, normative, and forced-choice normative measures. Psychological Bulletin, 74, 167–184.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom’. International Journal of Science Education, 22, 993–1009.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2002). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24, 1273–1292.

    Article  Google Scholar 

  • Justi, R., & Gilbert, J. (2003). Teacher’s views on the nature of models. International Journal of Science Education, 25, 1369–1386.

    Article  Google Scholar 

  • Kaufman, L., & Rousseeuw, P. (2005). Finding groups in data. Hoboken: Wiley.

    Google Scholar 

  • Khine, M., & Saleh, I. (Eds.). (2011). Models and modeling. Dordrecht: Springer.

    Google Scholar 

  • Kleickmann, T., Hardy, I., Möller, K., Pollmeier, J., Tröbst, S., & Beinbrech, C. (2010). Die Modellierung naturwissenschaftlicher Kompetenz im Grundschulalter: Theoretische Konzeption und Testkonstruktion. [The modeling of scientific competence in primary school age: Theoretical conception and test construction.]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 265–283. Retrieved from http://www.ipn.uni-kiel.de/zfdn/pdf/16_Kleickmann.pdf.

    Google Scholar 

  • Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of competence in educational contexts. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 3–22). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland (KMK). (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [Biology education standards for the Mittlere Schulabschluss]. München: Wolters Kluwer.

    Google Scholar 

  • Koponen, I. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science Education, 16, 751–773.

    Article  Google Scholar 

  • Krell, M. (2012). Using polytomous IRT models to evaluate theoretical levels of understanding models and modeling in biology education. Science Education Review Letters, Theoretical Letters, 2012, 1–5. Retrieved from http://edoc.hu-berlin.de/serl/2012-1/PDF/2012_1.pdf.

    Google Scholar 

  • Krell, M., & Krüger, D. (2010). Diagnose von Modellkompetenz: Deduktive Konstruktion und Selektion von geschlossenen Items [Diagnosis of model competence: Deductive development and selection of closed items]. Erkenntnisweg Biologiedidaktik, 9, 23–37.

    Google Scholar 

  • Krell, M., Czeskleba, A., & Krüger, D. (2012). Validierung von Forced Choice-Aufgaben durch Lautes Denken [Validation of forced choice-tasks using thinking aloud protocols]. Erkenntnisweg Biologiedidaktik, 11, 53–70.

    Google Scholar 

  • Langeheine, R., & Rost, J. (Eds.). (1988). Latent trait and latent class models. New York: Plenum Press.

    Google Scholar 

  • Magnani, L., & Nersessian, N. (Eds.). (2002). Model-based reasoning. New York: Kluwer Academic.

    Google Scholar 

  • Mahr, B. (2008). Ein Modell des Modellseins. [A model of model being.]. In U. Dirks & E. Knobloch (Eds.), Modelle (pp. 187–218). Frankfurt/Main: Peter Lang.

    Google Scholar 

  • Martinez, M. (1991). A comparison of multiple-choice and constructed figural response items. Journal of Educational Measurement, 28, 131–145.

    Article  Google Scholar 

  • Martinez, M. (1999). Cognition and the question of test item format. Educational Psychologist, 34, 207–218.

    Article  Google Scholar 

  • Maydeu-Olivares, A., & Böckenholt, U. (2005). Structural equation modeling of paired-comparison and ranking data. Psychological Methods, 10, 285–304.

    Article  Google Scholar 

  • Morgan, M., & Morrison, M. (Eds.). (1999). Models as mediators. Cambridge: Cambridge University Press.

    Google Scholar 

  • Muthén, L. & Muthén, B. (1998–2007). Mplus user’s guide: Fifth edition. Los Angeles, CA: Muthén & Muthén.

  • National Research Council (NRC). (2000). Inquiry and the national science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Nylund, K., Asparouhov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.

    Article  Google Scholar 

  • Odenbaugh, J. (2005). Idealized, inaccurate but successful: A pragmatic approach to evaluating models in theoretical ecology. Biology and Philosophy, 20, 231–255.

    Article  Google Scholar 

  • Oh, P., & Oh, S. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33, 1109–1130.

    Article  Google Scholar 

  • Patzke, C., & Upmeier zu Belzen, A. (2011). Entwicklung von Modellkompetenz im Biologieunterricht. [Development of model competence in biology education.] [Abstract]. In F. Bogner (Ed.), Internationale Tagung der Fachsektion Didaktik der Biologie (FDdB) im VBIO (pp. 168–169). Bayreuth: Difo Druck.

    Google Scholar 

  • Penner, D., Giles, N., Lehrer, R., & Schauble, L. (1997). Building functional models: Designing an elbow. Journal of Research in Science Teaching, 34, 125–143.

    Article  Google Scholar 

  • Schneider, W., Schlagmüller, M., & Ennemoser, M. (2007). LGVT 6–12: Lesegeschwindigkeits- und verständnistest für die Klassen 6–12. [LGVT 6–12: Reading speed and reading comprehension test for 6th-12th graders.]. Göttingen: Hogrefe.

    Google Scholar 

  • Schwarz, C., & White, B. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23, 165–205.

    Article  Google Scholar 

  • Schwarz, C., Reiser, B., Davis, E., Kenyon, L., Acher, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46, 632–654.

    Article  Google Scholar 

  • Schwarz, C., Reiser, B., Acher, A., Kenyon, L., & Fortus, D. (2012). MoDeLS: Challenges in defining a learning progression for scientific modeling. In A. Alonzo & A. Gotwals (Eds.), Learning progressions in science. Current challenges and future directions (pp. 101–137). Rotterdam: Sense.

    Google Scholar 

  • Sins, P., Savelsbergh, E., Van Joolingen, W., & Van Hout–Wolters, B. (2009). The relation between students’ epistemological understanding of computer models and their cognitive processing on a modelling task. International Journal of Science Education, 31, 1205–1229.

    Article  Google Scholar 

  • Spiel, C., & Glück, J. (2008). A model-based test of competence profile and competence level in deductive reasoning. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 45–68). Göttingen: Hogrefe & Huber.

    Google Scholar 

  • Suckling, C., Suckling, K., & Suckling, C. (1978). Chemistry through models: Concepts and applications of modelling in chemical science and industry. Cambridge: Cambridge University Press.

    Google Scholar 

  • Terzer, E. & Upmeier zu Belzen, A. (2011, September). Model competence in biology education: Evaluation of a theoretical structure using multiple-choice items. Paper presented at the 14th EARLI Conference, Exeter.

  • Terzer, E., Krell, M., Krüger, D., & Upmeier zu Belzen, A. (2011). Assessment of students’ concepts of models and modelling using multiple- and forced-choice items [Abstract]. In C. Bruguière (Ed.), Science learning & citizenship. 9th international conference ESERA 2011 (p. 220).

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2002). Student's understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.

    Article  Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2004). Students’ understanding of the descriptive and predictive nature of teaching models in organic chemistry. Research in Science Education, 34, 1–20.

    Article  Google Scholar 

  • Upmeier zu Belzen, A., & Krüger, D. (2010). Modellkompetenz im Biologieunterricht [Model competence in biology education]. Zeitschrift für Didaktik der Naturwissenschaften, 16, 41–57. Retrieved from http://www.ipn.uni-kiel.de/zfdn/jg16.html.

    Google Scholar 

  • Van Der Valk, T., Van Driel, J., & De Vos, W. (2007). Common characteristics of models in present-day scientific practice. Research in Science Education, 37, 469–488.

    Article  Google Scholar 

  • Van Driel, J., & Verloop, N. (1999). Teachers’ knowledge of models and modelling in science. International Journal of Science Education, 21, 1141–1153.

    Article  Google Scholar 

  • Van Driel, J., & Verloop, N. (2002). Experienced teacher’s knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24, 1255–1277.

    Article  Google Scholar 

  • Wang, C.-Y., & Barrow, L. (2011). Characteristics and levels of sophistication: An analysis of chemistry students’ ability to think with mental models. Research in Science Education, 41, 561–586.

    Article  Google Scholar 

  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92, 941–967.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank the two anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Krell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krell, M., Upmeier zu Belzen, A. & Krüger, D. Students’ Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent?. Res Sci Educ 44, 109–132 (2014). https://doi.org/10.1007/s11165-013-9365-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-013-9365-y

Keywords

Navigation