Skip to main content
Log in

Metal–organic framework MIL-101(Cr): an efficient catalyst for the synthesis of biphenyls and biphenyl diols

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pharmaceutically active ingredients such as biphenyls and biphenyl diols were synthesized using MIL-101(Cr) catalyst. The Metal Organic Framework, MIL-101(Cr) catalyst was synthesized using the hydrothermal method. Different phases in the as-synthesized MIL-101(Cr) catalyst were characterized using the X-ray diffraction technique. Fourier transform infrared spectroscopy (FTIR) was used to identify various functional groups present in the synthesized material, Field emission-scanning electron microscopy and Transmission electron microscopy were used to study the morphology of the sample. The chemical composition of MIL-101(Cr) was investigated using Energy-dispersive X-ray spectroscopy. Particle size and zeta potential measurements were performed, which provided information about surface charge and stability in the suspension. The catalyst MIL-101(Cr) was used to carry out the Ullmann reaction due to its large surface area, tunable porosity, and easy extraction from the reaction mixture. Biphenyls and biphenyl diols were refluxed in ethanol using MIL-101(Cr) catalyst. This is a very clean and efficient synthetic method for synthesizing biphenyls and biphenyl diols. As synthesized biphenyls and biphenyl diols were characterized by FTIR, 1H and 13C NMR. The retention of catalytic activity up to five cycles, completion of the reaction in an extremely short time, maximum yield, environment friendly and mild reaction conditions are the benefits of our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

Data availability

The authors confirm that this article contains all the data supporting the findings of this study.

References

  1. A. Vinu, M. Miyahara, T. Mori, K. Ariga, J. Porous Mater. 13, 379 (2006)

    Article  CAS  Google Scholar 

  2. R.S. Salama, S.M. El-Bahy, M.A. Mannaa, Colloids Surf. A Physicochem. Eng. Asp. 628, 127261 (2021)

    Article  CAS  Google Scholar 

  3. G. Férey, Chem. Soc. Rev. 37, 191 (2008)

    Article  PubMed  Google Scholar 

  4. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 43, 6011 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. H.M. Altass, M. Morad, A.E.R.S. Khder, M.A. Mannaa, R.S. Jassas, A.A. Alsimaree, S.A. Ahmed, R.S. Salama, J. Taiwan Inst. Chem. Eng. 128, 194 (2021)

    Article  CAS  Google Scholar 

  6. R. Salama, Delta Univ. Sci. J. 2, 10 (2019)

    Google Scholar 

  7. S.M. El-Dafrawy, R.S. Salama, S.A. El-Hakam, S.E. Samra, J. Mater. Res. Technol. 9, 1998 (2020)

    Article  CAS  Google Scholar 

  8. A. Yadav, R.V. Patel, B.G. Vyas, P.K. Labhasetwar, V.K. Shahi, Colloids Surf. A Physicochem. Eng. Asp. 645, 128918 (2022)

    Article  CAS  Google Scholar 

  9. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2011)

    Article  PubMed  Google Scholar 

  10. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y.K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 9, 172 (2009)

    Article  PubMed  Google Scholar 

  11. P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Chem. Rev. 112, 1232 (2011)

    Article  PubMed  Google Scholar 

  12. R.V. Patel, A. Yadav, J. Mol. Struct. 1252, 132128 (2022)

    Article  Google Scholar 

  13. R.S. Salama, M.A. Mannaa, H.M. Altass, A.A. Ibrahim, A.E.R.S. Khder, RSC Adv. 11, 4318 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R.S. Salama, S.M. Hassan, A.I. Ahmed, W.S.A. El-Yazeed, M.A. Mannaa, RSC Adv. 10, 21115 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. F.T. Alshorifi, D.E. Tobbala, S.M. El-Bahy, M.A. Nassan, R.S. Salama, Catal. Commun. 169, 106479 (2022)

    Article  CAS  Google Scholar 

  16. R. Salama, S.A. El-Hakam, S. Samra, S. El-Dafrawy, A. Ibrahim, A. Ahmed, Delta Univ. Sci. J. 6, 266 (2023)

    Google Scholar 

  17. P. Yadav, A. Yadav, P.K. Labhasetwar, Environ. Sci. Pollut. Res. 29, 37204 (2022)

    Article  CAS  Google Scholar 

  18. A. Yadav, R.V. Patel, P.K. Labhasetwar, V.K. Shahi, J. Water Process Eng. 43, 102317 (2021)

    Article  Google Scholar 

  19. Y.-G. Sun, G. Xiong, M.-Y. Guo, F. Ding, S.-J. Wang, P.F. Smet, D. Poelman, E.-J. Gao, F. Verpoort, Dalt. Trans. 41, 7670 (2012)

    Article  CAS  Google Scholar 

  20. M. Kurmoo, Chem. Soc. Rev. 38, 1353 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. C. Wang, Z. Xie, K.E. Krafft, W. Lin, J. Am. Chem. Soc. 133, 13445 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. S. Bhattacharjee, C. Chen, W.-S. Ahn, RSC Adv. 4, 52500 (2014)

    Article  CAS  Google Scholar 

  23. I. Yellapurkar, S. Bhabal, M.M.V. Ramana, K. Jangam, V. Salve, S. Patange, P. More, Res. Chem. Intermed. 47, 2669 (2021)

    Article  CAS  Google Scholar 

  24. P. Patil, S. Kadam, D. Patil, P. More, Catal. Commun. 170, 106500 (2022)

    Article  CAS  Google Scholar 

  25. P. Patil, S. Kadam, D. Patil, P. More, J. Mol. Liq. 345, 117867 (2022)

    Article  CAS  Google Scholar 

  26. R. Athavale, S. Gardi, F. Choudhary, D. Patil, N. Chandan, P. More, Appl. Catal. A Gen. 669, 119505 (2024)

    Article  CAS  Google Scholar 

  27. Z.J. Jain, P.S. Gide, R.S. Kankate, Arab. J. Chem. 10, S2051 (2017)

    Article  CAS  Google Scholar 

  28. K.C. Nicolaou, C.N.C. Boddy, S. Bräse, N. Winssinger, Angew. Chemie Int. Ed. 38, 2096 (1999)

    Article  CAS  Google Scholar 

  29. B. Yuan, Y. Pan, Y. Li, B. Yin, H. Jiang, Angew. Chemie Int. Ed. 49, 4054 (2010)

    Article  CAS  Google Scholar 

  30. M. Bahadori, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. Mechler, I. Mohammadpoor-Baltork, F. Zadehahmadi, Microporous Mesoporous Mater. 253, 102 (2017)

    Article  CAS  Google Scholar 

  31. F. Carson, V. Pascanu, A. Bermejo Gómez, Y. Zhang, A.E. Platero-Prats, X. Zou, B. Martín-Matute, Chem.—A Eur. J. 21, 10896 (2015)

    Article  CAS  Google Scholar 

  32. S. Sadeghi, M. Jafarzadeh, A. Reza Abbasi, K. Daasbjerg, New J. Chem. 41, 12014 (2017)

    Article  CAS  Google Scholar 

  33. V. Pascanu, Q. Yao, A. Bermejo Gómez, M. Gustafsson, Y. Yun, W. Wan, L. Samain, X. Zou, B. Martín-Matute, Chemistry 19, 17483 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. Hayashi, N. Obata, M. Tamaru, S. Yamaguchi, Y. Matsuo, A. Saeki, S. Seki, Y. Kureishi, S. Saito, S. Yamaguchi, H. Shinokubo, Org. Lett. 14, 866 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. G. Yang, S.-J. Park, Materials (Basel) 12, 1177 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. P. Hou, G. Xing, D. Han, Y. Zhao, G. Zhang, H. Wang, C. Zhao, C. Yu, J. Porous Mater. 26, 1607 (2019)

    Article  CAS  Google Scholar 

  37. X. Zheng, J. Wang, Int. J. Anal. Chem. 2019, 2547280 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  38. H. Su, J. Lv, L. Yang, L. Feng, Y. Liu, Z. Du, L. Zhang, RSC Adv. 10, 2198 (2020)

    Article  CAS  Google Scholar 

  39. A. Jarrah, S. Farhadi, Acta Chim. Slov. 66, 85 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. X. Huang, Q. Hu, L. Gao, Q. Hao, P. Wang, D. Qin, RSC Adv. 8, 27623 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Karimi Alavijeh, K. Akhbari, Inorg. Chem. 59, 3570 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JT, MG and PM are thankful to the management, Secretary Dr. B.B.Sharma and Principal Prof. (Dr.) Preeta Nilesh of K.E.T’S,V.G.Vaze College Autonomous for the laboratory facilities.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

JT and MG: Synthesis of catalyst, biphenyl and biphenyl diol derivatives; AY and KW: Characterization and interpretation of derivatives; PM: Conceptualization of idea, combine all the results and writing the manuscript.

Corresponding author

Correspondence to Paresh More.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

Not applicable.

Consent for publication

The authors consent to publish the paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4494 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, J., Gupta, M., Yadav, A. et al. Metal–organic framework MIL-101(Cr): an efficient catalyst for the synthesis of biphenyls and biphenyl diols. Res Chem Intermed 50, 1645–1660 (2024). https://doi.org/10.1007/s11164-024-05240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-024-05240-6

Keywords

Navigation