Skip to main content
Log in

Influence of bicomponent Pd based catalysts on anthracene hydrogenation reaction

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In order to prepare efficient lightweight fuel, using anthracene as a model compound instead of polycyclic aromatic hydrocarbons. The focus of this study was to elucidate the synergy of M (M = Zr, La, Au) in Pd/γ-Al2O3 catalyst towards the hydrogenation of anthracene. It was revealed that the M addition as a second promoter positively influenced catalyst performance. In the paper, the selectivity of Pd-based catalysts for hydrogenation products depends on temperature. It was believed that the active metal Pd adsorbs anthracene molecules and catalyzes the transfer of diatomic hydrogen, while the carrier promotes the transfer of monatomic hydrogen. Moreover, the metallic Pd0 species on PdZr/Al2O3 and PdAu/Al2O3 supports were found to be more electron-rich than those on Pd/Al2O3, which increases the adsorption capacity of hydrogen atoms. The Pd0 species on the catalyst were more electron deficient under the action of La, which inhibits the detachment of intermediate products on the active metal, thereby improving the selectivity of perhydroanthracene (The selectivity of perhydroanthracene is 89% at a temperature of 275 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Rubio-Clemente, R.A. Torres-Palma, G.A. Peñuela, Sci. Total. Environ. 478, 201–225 (2014). https://doi.org/10.1016/j.scitotenv.2013.12.126

    Article  CAS  PubMed  Google Scholar 

  2. M. Zhong, D. Zou, Y.B. Xu et al., J. Energy Inst. 95, 41–51 (2021). https://doi.org/10.1016/j.joei.2020.11.009

    Article  CAS  Google Scholar 

  3. J. Wang, W.Y. Ren, Y. Wang, Res. Chem. Intermed. 49, 5541–5550 (2023). https://doi.org/10.1007/s11164-023-05135-y

    Article  CAS  Google Scholar 

  4. S.S. Bello, C. Wang, M.J. Zhang et al., Rcs. Adv 10(61), 37287–37298 (2020). https://doi.org/10.1039/D0RA07419E

    Article  CAS  Google Scholar 

  5. X.P. Su, P. An, J.W. Gao et al., Chin. J. Chem. Eng. 10, 2566–2576 (2020). https://doi.org/10.1016/j.cjche.2020.05.010

    Article  CAS  Google Scholar 

  6. G.H. Lu, Y.H. Bai, L. Ren, Energy Convers. Manage. 225, 113471 (2020). https://doi.org/10.1016/j.enconman.2020.113471

    Article  CAS  Google Scholar 

  7. Y.J. Zhang, J.C. Zhou, K. Li et al., Catal. Today 358, 129–137 (2020). https://doi.org/10.1016/j.cattod.2020.01.022

    Article  CAS  Google Scholar 

  8. K. Alexander, B. Viktor, D. Sergei et al., Fuel 280, 118625 (2020). https://doi.org/10.1016/j.fuel.2020.118625

    Article  CAS  Google Scholar 

  9. X. Chen, X.B. Wang, S.H. Han et al., ACS Appl. Mater. Interfaces 14(1), 590–602 (2021). https://doi.org/10.1021/acsami.1c16965

    Article  CAS  PubMed  Google Scholar 

  10. Z.Y. Ren, J.B. Zhang, Y.H. Bai et al., Int. J. Hydrogen Energy 46(42), 21853–21865 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.026

    Article  CAS  Google Scholar 

  11. Y. Jing, Z.X. Cai, C. Liu et al., ACS Catal. 10(2), 1010–1023 (2019). https://doi.org/10.1021/acscatal.9b03766

    Article  CAS  Google Scholar 

  12. X.H. Chen, L. Jia, Y. Zheng et al., Fuel 299, 120933 (2021). https://doi.org/10.1016/j.fuel.2021.120933

    Article  CAS  Google Scholar 

  13. S. Todorova, A. Naydenov, R. Velinova et al., React. Kinet. Mech. Cat 126(2), 663–678 (2019). https://doi.org/10.1007/s11144-018-1523-9

    Article  CAS  Google Scholar 

  14. Y. Jing, G. Wang, K.W. Ting et al., J. Catal. 400, 387–396 (2021). https://doi.org/10.1016/j.jcat.2021.06.016

    Article  CAS  Google Scholar 

  15. Y.M. Qi, B.J. Wang, M.H. Fan et al., Chem. Eng. SCI 243, 116786 (2021). https://doi.org/10.1016/j.ces.2021.116786

    Article  CAS  Google Scholar 

  16. S.L. Li, L.L. Wang, M.M. Wu et al., Chin. J. Catal. 41(9), 1337–1347 (2020). https://doi.org/10.1016/S1872-2067(20)63580-X

    Article  CAS  Google Scholar 

  17. B.Q. Ge, Y.D. Hu, H.W. Zhang et al., Appl. Serf. SCI 539, 148212 (2021). https://doi.org/10.1016/j.apsusc.2020.148212

    Article  CAS  Google Scholar 

  18. Y.Y. Guo, C.N. Dai, Z.G. Lei, Chem. Eng. Process. 136(1), 211–225 (2019). https://doi.org/10.1016/j.cep.2018.11.006

    Article  CAS  Google Scholar 

  19. Q. Han, X.F. Wu, Y.C. Liao et al., Mater. Lett. 95, 9–12 (2013). https://doi.org/10.1016/j.matlet.2012.12.065

    Article  CAS  Google Scholar 

  20. L.B. Sun, Z.M. Zong, J. Kou et al., Energy Fuels 18(5), 1500–1504 (2004). https://doi.org/10.1021/ef049946a

    Article  CAS  Google Scholar 

  21. Y.M. Ma, X.Y. Wei, X. Zhou et al., Energy Fuels 23(2), 638–645 (2009). https://doi.org/10.1021/ef800808t

    Article  CAS  Google Scholar 

  22. M. Li, D.G. Wang, J.H. Li et al., Chinese. J. Catal. 38(3), 597–606 (2017). https://doi.org/10.1016/S1872-2067(17)62779-7

    Article  CAS  Google Scholar 

  23. A.R. Beltramone, D.E. Resasco, W.E. Alvarez et al., Ind. Eng. Chem. Res. 47(19), 7161–7166 (2008). https://doi.org/10.1021/ie8004258

    Article  CAS  Google Scholar 

  24. C. Morin, D. Simon, P. Sautet, J. Phys. Chem. B 108(18), 5653–5665 (2004). https://doi.org/10.1021/jp0373503

    Article  CAS  Google Scholar 

  25. X.H. Chen, Y. Zheng, F. Huang et al., ACS Catal. 8(12), 11016–11028 (2018). https://doi.org/10.1021/acscatal.8b02420

    Article  CAS  Google Scholar 

  26. H. Phuoc Hoang, D.L.G. Sanghez, A. Saverio et al., Appl. Catal. B Environ. 278, 119256 (2020). https://doi.org/10.1016/j.apcatb.2020.119256

    Article  CAS  Google Scholar 

  27. N. Xiang, X.J. Han, Y.R. Bai et al., Mol. Catal 494, 111112 (2020). https://doi.org/10.1016/j.mcat.2020.111112

    Article  CAS  Google Scholar 

  28. R. Ariza, M. Dael, B. Sotillo et al., J. Alloy. Compd. 877, 160219 (2021). https://doi.org/10.1016/j.jallcom.2021.160219

    Article  CAS  Google Scholar 

  29. G.K. Bethke, H.H. Kung, Appl. Catal A-Gen 194–195, 43–53 (2000). https://doi.org/10.1016/S0926-860X(99)00352-X

    Article  Google Scholar 

  30. A.P. Kumar, D. Bilehal, Aschalew et al., RSC Adv. 11(11), 6396–6406 (2021). https://doi.org/10.1039/D0RA10290C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. B. Mohamed, L. Mama, O.M. Said et al., J. Hazard. Mater. 153(3), 911–918 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.076

    Article  CAS  Google Scholar 

  32. H.F. Zahra. A. Abolhasan, J. Therm. Anal. Calorim. 147(3):119–131 (2022). https://doi.org/10.1007/s10973-021-10564-1

  33. L.L. Tang, G. Yu, X.G. Li et al., Chem Plus Chem 80(4), 722–730 (2015). https://doi.org/10.1002/cplu.201402404

    Article  CAS  PubMed  Google Scholar 

  34. G. Ketteler, D.F. Ogletree, H. Bluhm et al., J. Am. Chem. Soc. 127(51), 18269–18273 (2005). https://doi.org/10.1021/ja055754y

    Article  CAS  PubMed  Google Scholar 

  35. I. Son-Ki, J. Young-Du, K. Dae-Chul et al., Catal. Today 93–95, 149–154 (2004). https://doi.org/10.1016/j.cattod.2004.06.096

    Article  CAS  Google Scholar 

  36. J.H. Park, J.H. Cho, Y.J. Kim et al., Appl. Catal. B-Environ. 160–161(1), 135–143 (2014). https://doi.org/10.1016/j.apcatb.2014.05.013

    Article  CAS  Google Scholar 

  37. Y.P. Du, A.M.B. Anpour, L. Milošević et al., ACS Catal. 10(20), 12058–12070 (2020). https://doi.org/10.1021/acscatal.0c02146

    Article  CAS  Google Scholar 

  38. A. Stanislaus, B.H. Cooper, Chem. Rev. 36(1), 75–123 (1994). https://doi.org/10.1080/01614949408013921

    Article  CAS  Google Scholar 

  39. N. AbedinKhanSung, H. Jhung, J. Hazard. Mater. 198–213, 325 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.070

    Article  CAS  Google Scholar 

  40. J. Greeley, M. Mavrikakis, Nat. Mater. 3(11), 810–815 (2004). https://doi.org/10.1038/nmat1223

    Article  CAS  PubMed  Google Scholar 

  41. Y. Yuan, J.C. Wang, S. Adimi, Nat. Mater. 19(3), 282–286 (2019). https://doi.org/10.1038/s41563-019-0535-9

    Article  CAS  PubMed  Google Scholar 

  42. J.S. Tian, H.G. Peng, X.L. Xu et al., Catal. Sci. Technol. 5(4), 2270–2281 (2015)

    Article  CAS  Google Scholar 

  43. N. Amit, S. Sovandeb, N. Mousumi et al., Microchem. J. 158, 105146 (2020). https://doi.org/10.1016/j.microc.2020.105146

    Article  CAS  Google Scholar 

  44. X.B. Zhang, Y.Y. Fan, E.M. You et al., Nano Energy 84, 105950 (2021). https://doi.org/10.1016/j.nanoen.2021.105950

    Article  CAS  Google Scholar 

  45. Y. Wang, H.H. Liu, S.Y. Wang et al., J. Catal. 311, 314–324 (2014). https://doi.org/10.1016/j.jcat.2013.12.018

    Article  CAS  Google Scholar 

  46. M. Nikhil, Y. Ganapati, Mol. Catal. 501, 1162 (2021). https://doi.org/10.1016/j.mcat.2020.111362

    Article  CAS  Google Scholar 

  47. V. Bilakanti, N. Gutta, V.K. Velisoju et al., React Kinet Mech Cat 130(1), 347–362 (2020). https://doi.org/10.1007/s11144-020-01765-0

    Article  CAS  Google Scholar 

  48. H. Jamaledin, T. Saeed, M. Mercedeh et al., Res. Chem. Intermed. 45(5), 3165–3181 (2019). https://doi.org/10.1007/s11164-019-03785-5

    Article  CAS  Google Scholar 

  49. L.J. Simon, J.G.V. Ommen, A. Jentys et al., Catal. Today 73(1), 105–112 (2002). https://doi.org/10.1016/S0920-5861(01)00502-8

    Article  CAS  Google Scholar 

  50. W. Zhang, Y.L. Zhu, S.S. Niu, Y.W. Li, J. Mol Catal A-Chem 335(1), 71–81 (2011). https://doi.org/10.1016/j.molcata.2010.11.016

    Article  CAS  Google Scholar 

  51. B. Ye, S.M. Sun, H. Wang et al., Res. Chem. Intermed. 49(10), 4443–4459 (2023). https://doi.org/10.1007/s11164-023-05083-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Natural Science Foundation of China (Grant No. 21978189); Shanxi Province Basic Research Plan (Grant No. 202103021223087).

Author information

Authors and Affiliations

Authors

Contributions

B.: Experimental date acquisition, Date curation, Writing-original draft, Writing-review & editing. M.Y. W.: Conceptualization, Writing-review & editing, Funding acquisition. L.: Investigation, Writing-review & editing. J.: Investigation, Visualization. J.W. W.: Methodology, Funding acquisition, Supervision. W.: Methodology, Date curation, Manuscript revision. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Junwen Wang or Ailian Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Wang, M., Liu, N. et al. Influence of bicomponent Pd based catalysts on anthracene hydrogenation reaction. Res Chem Intermed 50, 1603–1617 (2024). https://doi.org/10.1007/s11164-023-05226-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05226-w

Keywords

Navigation