Skip to main content

Advertisement

Log in

Experimental and theoretical insight of Schiff base transition metal complexes: synthesis, characterization, antimicrobial and COVID-19 molecular docking studies

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the current research work, a series of Co(II), Cu(II), Ni(II) and Zn(II) complexes of novel 5,5′-[(1-E,1′-E)-(4-nitro-1,2-phenylene)bis(azaneylylidene)bis(methaneylylidene) bis(2 methoxy phenol)] (NAMM) Schiff base ligand have been synthesized by the condensation reaction of 4-nitro-o-phenylenediammine with 3-hydroxy-4-methoxy-benzaldehyde. The characterization study of Schiff base ligand and its metal complexes is executed by various instrumental and spectral techniques such as 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance, infrared spectroscopy, mass analysis, ultraviolet–visible technique, elemental analysis, electron paramagnetic resonance, thermogravimetric analysis and powder X-ray diffraction techniques to know information about the structures of compounds. The spectral data reveal the hexadentate nature of synthesized metal complexes. To clarify the conductive and optical properties of complexes, direct optical energy band gap and Urbach spectral tail energy were estimated. The thermodynamic and kinetic parameters were calculated by Coats–Redfern method. In addition, the docking was carried out with two different proteins, COVID-19 main protease (PDB-6LU7) and human prostate specific antigen in a fab sandwich (PDB-3QUM) and the results revealed a large negative binding affinity value for zinc complex for both receptors, thereby exhibiting good protein–complex interactions. Further, the compounds were in silico screened for their biocompatibilities and pharmacokinetic behavior through ADMET and PASS studies which signifies the drug-like character of the synthesized compounds. Moreover, antimicrobial studies were evaluated against four different bacterial strains as well as two fungal strains and results evinced highest activity of copper complex (2) against E. coli (MIC-0.0055 μmol/mL) and C. albicans (MIC-0.0110 μmol/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data supporting the results of this study are available on fair request from the corresponding author. The data analyzed can be accessed from the manuscript for the current study.

References

  1. S.K. Tadavi, A.A. Yadav, R.S. Bendre, J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.09.112

    Article  Google Scholar 

  2. A.S. Shekhawat, N.P. Singh, N.S. Chundawat, J. Sci. Res. (2022). https://doi.org/10.3329/jsr.v14i1.54814

    Article  Google Scholar 

  3. B. Naureen, G.A. Miana, K. Shahid, M. Asghar, S. Tanveer, A. Sarwar, J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.129946

    Article  Google Scholar 

  4. A.A. Abu-Yamin, M.S. Abduh, S.A.M. Saghir, N. Al-Gabri, Pharmaceuticals 15, 454 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Nain, S. Asija, Y. Deswal, N. Kumar, P. Barwa, Indian J. Heterocycl. Chem. (2022) https://connectjournals.com/01951.2022.32.1

  6. N. Kumar, S. Asija, Y. Deswal, S. Saroya, A. Kumar, Res. Chem. Intermed. (2022). https://doi.org/10.1007/s11164-022-04860-0

    Article  Google Scholar 

  7. N. Kumar, Phosphorus Sulfur Silicon Relat. Elem. (2022). https://doi.org/10.1080/10426507.2022.2048386

    Article  Google Scholar 

  8. S.S. Khaidir, H. Bahron, A.M. Tajuddin, K. Ramasamy, J. Sustain. Sci. Manag. (2022). https://doi.org/10.46754/jssm.2022.4.003

    Article  Google Scholar 

  9. A. Singh, H.P. Gogoi, P. Barman, A.K. Guha, Appl. Organomet. Chem. (2022). https://doi.org/10.1002/aoc.6673

    Article  Google Scholar 

  10. M.A. Diab, A.Z. El-Sonbati, S.M. Morgan, M.A. El-Mogazy, Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4378

    Article  Google Scholar 

  11. E. Sonbati, W.H. Mahmoud, G.G. Mohamed, M.A. Diab, S.M. Morgan, S.Y. Abbas, Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.5048

    Article  Google Scholar 

  12. M. Kaute, E.M. Ngandung, F.A.N. Kamga, A.G. Paboudam, C.A. Mariam, C.N. Pecheu, T.K. Ignas, P.T. Ndifon, Egypt. J. Chem. (2022). https://doi.org/10.21608/EJCHEM.2022.82313.4087

    Article  Google Scholar 

  13. K. Andiappan, A. Sanmugam, E. Deivanayagam, K. Karuppasamy, H.S. Kim, D. Vikraman, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.251

    Article  PubMed  Google Scholar 

  14. K. Mounika, J. Sci. Res. (2010). https://doi.org/10.3329/jsr.v2i3.4899

    Article  Google Scholar 

  15. K. Subin, K.K. Aravindakshan, Res. Chem. (2021). https://doi.org/10.1016/j.rechem.2021.100129

    Article  Google Scholar 

  16. C. Abate, F. Carnamucio, O. Giuffre, C. Foti, Biomolecules (2022). https://doi.org/10.3390/biom12070933

    Article  PubMed  PubMed Central  Google Scholar 

  17. H.A. Ward, T.M. Musa, Z.N. Nasif, Al-Mustan. J. Sci. (2022). https://doi.org/10.23851/mjs.v33i2.1121

    Article  Google Scholar 

  18. A. Singh, A. Chaudhary, Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/2467463

    Article  PubMed  PubMed Central  Google Scholar 

  19. P. Ghorai, R. Saha, S. Bhuiya, S. Das, P. Brandao, D. Ghosh, T. Bhaumik, P. Bandyopadhyay, D. Chattopadhyay, A. Saha, Polyhedron (2018). https://doi.org/10.1016/j.poly.2017.11.041

    Article  Google Scholar 

  20. K. Kar, D. Ghosh, B. Kabi, A. Chandra, Polyhedron (2022). https://doi.org/10.1016/j.poly.2022.115890

    Article  Google Scholar 

  21. R.S. Joseyphus, M.S. Nair, Mycobio (2008). https://doi.org/10.4489/MYCO.2008.36.2.093

    Article  Google Scholar 

  22. S. Mahato, N. Meheta, K. Muddukrishnaiah, M. Joshi, M. Shit, A. Roy Choudhury, B. Biswas, Polyhedron (2020). https://doi.org/10.1016/j.poly.2020.114933

    Article  Google Scholar 

  23. R. Atkins, G. Brewer, E. Kokot, G.M. Mockler, E. Sinn, Inorg. Chem. (1985). https://doi.org/10.1021/ic00196a003

    Article  Google Scholar 

  24. H. Kargar, A.A. Ardakani, M.N. Tahir, M. Ashfaq, K.S. Munawar, J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130112

    Article  Google Scholar 

  25. C. Shiju, D. Arish, S. Kumaresan, J. Mol. Struct. 1221, 128770 (2020)

    Article  CAS  Google Scholar 

  26. N. Ahmad, M. Alam, R. Wahab, M. Ahmed, A. Ahmad, Open Chem. (2020). https://doi.org/10.1515/chem-2020-0168

    Article  Google Scholar 

  27. H.A.E. Boraey, A.A.S. El-Din, Spectrochim. Acta (2014). https://doi.org/10.1016/j.saa.2014.05.018

    Article  Google Scholar 

  28. M. Pervaiz, S. Sadiq, A. Sadiq, U. Younas, A. Ashraf, Z. Saeed, M. Zuber, A. Adnan, Coord. Chem. Rev. (2021). https://doi.org/10.1016/j.ccr.2021.214128

    Article  Google Scholar 

  29. A.M.A. Alagha, Y.A. Ammar, H.A. Bayoumi, S.A. Aldhlmani, J. Mol. Struct. (2014). https://doi.org/10.1016/j.molstruc.2014.05.078

    Article  Google Scholar 

  30. L. Rahman, M.S. Adam, N. Al-Zaqri, M.R. Shehata, H. El-Sayed Ahmed, S.K. Mohamed, Arab. J. Chem. (2022). https://doi.org/10.1016/j.arabjc.2022.103737

    Article  Google Scholar 

  31. S. Basaleh, H.B. Howsaui, A.A. Sharfalddin, M.A. Hussien, Res. Chem. (2022). https://doi.org/10.1016/j.rechem.2022.100445

    Article  Google Scholar 

  32. J. Saranya, S.J. Kirubabathy, S. Chitra, A. Zarrouk, K. Kalpana, K. Lavanya, B. Ravikiran, Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04416-7

    Article  Google Scholar 

  33. H. Howsaui, A.A. Sharfalddin, M.H. Abdellattif, A.S. Basaleh, M.A. Hussien, Appl. Sci. (2021). https://doi.org/10.3390/app11199067

    Article  Google Scholar 

  34. M. Chaudhary, Res. Equ. (2022). https://doi.org/10.21203/rs.3.rs-880545

    Article  Google Scholar 

  35. V. Rangaswamy, S. Renuka, I. Venda, Mater. Today Proc. (2022). https://doi.org/10.1016/j.matpr.2021.10.360

    Article  Google Scholar 

  36. A.Z. El-Sonbati, N.F. Omar, M.I. Abou-Dobara, M.A. Diab, M.A. El-Mogazy, Sh.M. Morgan, M.A. Hussien, A.A. El-Ghettany, J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2021.130481

    Article  Google Scholar 

  37. G.G. Mohamed, M.M. Omar, Y.M. Ahmed, J. Inorg. Gen. Chem. (2021). https://doi.org/10.1002/zaac.202100245

    Article  Google Scholar 

  38. O.E. Gammal, F.S. Mohamed, G.N. Rezk, A.A. El-Bindary, J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2020.115223

    Article  Google Scholar 

  39. T.A. Alorini, A.N. Al-Hakimi, S. El-S, E.H.L. Saeed, A.E.A.E.A. Alhamzi, Arab. J. Chem. (2022). https://doi.org/10.1016/j.arabjc.2021.103559

    Article  Google Scholar 

  40. R. Shah, H. Katouah, A.A. Sedayo, M. Abualnaja, M.M. Aljohani, F. Saad, R. Zaky, N.M. El-Metwaly, J. Mol. Liq. (2020). https://doi.org/10.1016/j.molliq.2020.114116

    Article  Google Scholar 

  41. M.S. Nair, D. Arish, R.S. Joseyphus, J. Saudi Chem. Soc. (2012). https://doi.org/10.1016/j.jscs.2010.11.002

    Article  Google Scholar 

  42. A. Hamil, K.M. Khalifa, A.A. Almutaleb, M.Q. Nouradean, Adv. J. Chem. Sec. A (2020). https://doi.org/10.33945/SAMI/AJCA.2020.4.13

    Article  Google Scholar 

  43. A.M.A. Adam, A. Alhadhrami, H.A. Saad, M.S. Refat, Appl. Organomet. Chem. (2017). https://doi.org/10.1002/aoc.3950

    Article  Google Scholar 

  44. M. Manjunath, A.D. Kulkarni, G.B. Bagihalli, S. Malladi, S.A. Patil, J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2016.07.123

    Article  Google Scholar 

  45. K. Adilee, S.R. Hasan, IOP Conf. Ser. Earth Environ. Sci. (2021). https://doi.org/10.1088/1755-1315/790/1/012031

    Article  Google Scholar 

  46. M. Kareem, PJMHS (2022). https://doi.org/10.53350/pjmhs22165655

    Article  Google Scholar 

  47. T.J. Saritha, P. Metilda, J. Saudi Chem. Soc. (2021). https://doi.org/10.1016/j.jscs.2021.101245

    Article  Google Scholar 

  48. A. Isiyaku, I.T. Siraj, A.U. Maigari, B. Magaji, Dutse J. Pure Appl. Sci. (2021). https://doi.org/10.4314/dujopas.v7i4a

    Article  Google Scholar 

  49. H.M. Vinusha, S.P. Kollur, H.D. Revanasiddappa, R. Ramu, P.S. Shirahatti, M.N.N. Prasad, S. Chandrashekar, M. Begum, Res. Chem. (2019). https://doi.org/10.1016/j.rechem.2019.100012

    Article  Google Scholar 

  50. V.P. Radha, S. Chitra, S. Jonekirubavathi, M. Chung, S. Kim, M. Prabakaran, J. Coord. Chem. (2020). https://doi.org/10.1080/00958972.2020.1752372

    Article  Google Scholar 

  51. N.H. Mahmoud, G.H. Elsayed, A. Aboelnaga, A.M. Fahim, Appl. Organomet. Chem. (2022). https://doi.org/10.1002/aoc.6697

    Article  Google Scholar 

  52. F.K. Ommenya, E.A. Nyawade, D.M. Andala, J. Kinyua, J. Chem. Hindawi (2020). https://doi.org/10.1155/2020/1745236

    Article  Google Scholar 

  53. M. Bingol, N. Turan, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2019.127542

    Article  Google Scholar 

  54. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, J. Chin. Chem. Soc. (2019). https://doi.org/10.1002/jccs.201800092

    Article  Google Scholar 

  55. F. Urbach, Phys. Rev. (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  Google Scholar 

  56. V. Sangwan, D.P. Singh, J. Chin. Chem. Soc. (2019). https://doi.org/10.1002/jccs.201900290

    Article  Google Scholar 

  57. A. Alothman, Z.M. Almarhoon, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.127704

    Article  Google Scholar 

  58. V. Sangwan, D.P. Singh, Viet. J. Chem. (2021). https://doi.org/10.1002/vjch.201900122

    Article  Google Scholar 

  59. H.H. Horowitz, G. Metzger, Anal. Chem. (1963). https://doi.org/10.1021/ac60203a013

    Article  Google Scholar 

  60. A.Z. El-Sonbati, M.A. El-Mogazy, S.G. Nozha, M.A. Diab, M.I. Abou-Dobara, A.M. Eldesoky, S.M. Morgan, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131498

    Article  Google Scholar 

  61. A.Z. El-Sonbati, M.A. Diab, A.M. Eldesoky, S.M. Morgan, O.L. Salem, Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.4839

    Article  Google Scholar 

  62. A.Z. El-Sonbati, M.A. Diab, S.M. Morgan, H.A. Seyam, J. Mol. Struct. (2018). https://doi.org/10.1016/j.molstruc.2017.10.020

    Article  Google Scholar 

  63. P. Jeyaraman, A. Alagarraj, R. Natarajan, J. Biomol. Struct. Dyn. (2019). https://doi.org/10.1080/07391102.2019.1581090

    Article  PubMed  Google Scholar 

  64. A.A. Lagunin, V.I. Dubovskaja, A.V. Rudik, P.V. Pogodin, D.S. Druzhilovskiy, T.A. Gloriozova, D.A. Filimonov, G.N. Sastry, V.V. Poroikov, PLoS ONE (2018). https://doi.org/10.1371/journal.pone.0191838

    Article  PubMed  PubMed Central  Google Scholar 

  65. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Deliv. Rev. (2001). https://doi.org/10.1016/s0169-409x(00)00129-0

    Article  PubMed  Google Scholar 

  66. S. Michael, P. Jeyaraman, B. Marimuthu, R. Rajasekar, R. Thanasamy, K. Kumar, N. Raman, J. Mol. Struct. (2023). https://doi.org/10.1016/j.molstruc.2023.134987

    Article  Google Scholar 

  67. S. Hosny, M.S. Ragab, R.F.A. El-Baki, Sci. Rep. (2023). https://doi.org/10.1038/s41598-023-28402-9

    Article  PubMed  PubMed Central  Google Scholar 

  68. S.G. Nozha, S.M. Morgan, S.E.A. Ahmed, M.A. El-Mogazy, M.A. Diab, A.Z. El-Sonbati, M.I. Abou-Dobara, J. Mol. Struct. (2021). https://doi.org/10.1016/j.molstruc.2020.129525

    Article  Google Scholar 

  69. G.G. Mohamed, A.A. El-Sherif, M.A. Saad, S.E.A. El-Sawy, S.M. Morgan, J. Mol. Liq. (2016). https://doi.org/10.1016/j.molliq.2016.09.065

    Article  Google Scholar 

  70. O. Trott, A.J. Olson, J. Comput. Chem. (2010). https://doi.org/10.1002/jcc.21334

    Article  PubMed  PubMed Central  Google Scholar 

  71. M.A. Diab, S.G. Nozha, A.Z. El-Sonbati, M.A. El-Mogazy, S.M. Morgan, Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.5153

    Article  Google Scholar 

  72. A.Z. El-Sonbati, M.A. Diab, S.M. Morgan, M.I. Abou-Dobara, A.A. El-Ghettany, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2019.127065

    Article  Google Scholar 

  73. S.M. Morgan, M.A. Diab, A.Z. El-Sonbati, Appl. Organomet. Chem. (2018). https://doi.org/10.1002/aoc.4504

    Article  Google Scholar 

  74. M.I. Abou-Dobara, N.F. Omar, A.Z. El-Sonbati, S.M. Morgan, O.L. Salem, A.M. Eldesoky, Mater. Sci. Eng. C (2019). https://doi.org/10.1016/j.msec.2019.05.012

    Article  Google Scholar 

  75. M. Aljohani, Bull. Chem. Soc. Ethiop. (2023). https://doi.org/10.4314/bcse.v37i1.8

    Article  Google Scholar 

  76. L. Ghasemi, M.H. Esfahani, A. Abbasi, M. Behzad, Polyhedron (2022). https://doi.org/10.1016/j.poly.2022.115825

    Article  PubMed  PubMed Central  Google Scholar 

  77. M. Gulcan, M. Sonmez, I. Berber, Turk. J. Chem. (2012). https://doi.org/10.3906/kim-1104-2

    Article  Google Scholar 

  78. M. Munjal, J. Pharmacog. Phytochem. (2018). https://doi.org/10.22271/phyto

    Article  Google Scholar 

  79. S.A. Khan, M. Kumar, S. Saxena, Orient. J. Chem. 27, 3 (2011)

    Google Scholar 

  80. K.R.S. Gowda, H.S.B. Naik, B.V. Kumar, C.N. Sudhamani, H.V. Sudeep, T.R.R. Naik, G. Krishnamurthy, Spectrochim. Acta (2013). https://doi.org/10.1016/j.saa.2012.12.011

    Article  Google Scholar 

  81. L.P. Nitha, R. Aswathy, N.E. Mathews, B.S. Kumari, K. Mohanan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. (2014). https://doi.org/10.1016/j.saa.2013.08.075

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge SAIF, IIT Bombay, for providing (ESR JEOL) analytical facility.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

IS was involved in data curation, writing—original draft preparation, investigation, visualization. AS helped in conceptualization, methodology, project administration, validation, writing—review and editing, supervision.

Corresponding author

Correspondence to Anshul Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4322 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sindhu, I., Singh, A. Experimental and theoretical insight of Schiff base transition metal complexes: synthesis, characterization, antimicrobial and COVID-19 molecular docking studies. Res Chem Intermed 50, 413–436 (2024). https://doi.org/10.1007/s11164-023-05179-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05179-0

Keywords

Navigation