Skip to main content
Log in

Three-component coupling of boronic acids, amines, and carbon disulfide by a heterogeneous catalyst of copper (II) embedded in a highly porous and magnetic Schiff base network of melamine

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, the mesoporous magnetic heterogeneous catalyst was synthesized by anchoring copper (II) onto the nitrogen-rich poly (melamine) Schiff base networks magnetic nanocomposite. First, MNP (Fe3O4@SiO2) was functionalized with chlorosilane (CPTS). Then, the chlorine of these functionalized magnetic nanoparticles could react with the –NH2 groups of the melamine through a nucleophilic substitution reaction. Simultaneously, the condensation polymerization of melamine and benzene-1, 3, 5-tricarbaldehyde was carried out in the presence of surface-modified magnetic nanoparticles. Later, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic absorption spectroscopy (AAS), Brunauer–Emmett–Teller surface analysis (BET), and energy dispersive analysis were deployed to characterize the catalyst. The results of the AAS measurement showed that the copper ion loading on the mesoporous nitrogen-rich supported catalyst was about 0.82 mmol g−1. The synthesized nanocomposite was used as a catalyst and shows excellent activity in the three-component coupling reaction of amines, carbon disulfide, and boronic acids. In the presence of 70 mg of the catalyst, a wide range of functionalized dithiocarbamates were synthesized leading to excellent yields. Moreover, this MNP@SNWMe@Cu catalyst was easily recovered and reused seven times without significant loss of its activity. The results of this research exhibited that the synthesized catalyst functioned with high catalytic activity in this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. M. Stasevych, V. Zvarych, V. Lunin, N.G. Deniz, Z. Gokmen, O. Akgun, E. Ulukaya, V. Poroikov, T. Gloriozova, V. Novikov, SAR QSAR Environ Res 28, 355 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. R.D. Li, H.L. Wang, Y.B. Li, Z.Q. Wang, X. Wang, Y.T. Wang, Z.M. Ge, R.T. Li, Eur. J. Med. Chem. 93, 381 (2015)

    Article  CAS  PubMed  Google Scholar 

  3. M. Wang, X. Song, N. Ma, Catal. Lett. 144, 1233 (2014)

    Article  CAS  Google Scholar 

  4. A.R. Sardarian, I. Dindarloo Inaloo, M. Zangiabadi, New J. Chem. 43, 8557 (2019)

    Article  CAS  Google Scholar 

  5. R.K. Vishwakarma, S. Kumar, K.N. Singh, Org. Lett. 23, 4147 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. A.R. Sardarian, I.D. Inaloo, A.R. Modarresi-Alam, Mol. Divers. 22, 863 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. A.R. Modarresi-Alam, I.D. Inaloo, E. Kleinpeter, J. Mol. Struct. 1024, 156 (2012)

    Article  CAS  Google Scholar 

  8. G. Li, Q. Yan, Z. Gan, Q. Li, X. Dou, D. Yang, Org. Lett. 21, 7938 (2019)

    Article  CAS  PubMed  Google Scholar 

  9. J.O. Adeyemi, G.M. Saibu, L.O. Olasunkanmi, A.O. Fadaka, M. Meyer, N.R.S. Sibuyi, D.C. Onwudiwe, A.O. Oyedeji, Heliyon 7, e07693 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Chaturvedi, S. Ray, Tetrahedron Lett. 47, 1307 (2006)

    Article  CAS  Google Scholar 

  11. D. Chaturvedi, S. Ray, Tetrahedron Lett. 48, 149 (2007)

    Article  CAS  Google Scholar 

  12. I.D. Inaloo, S. Majnooni, Chem Select 3, 4095 (2018)

    CAS  Google Scholar 

  13. G. Hogarth, Mini Rev. Med. Chem. 12, 1202 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. N. Bagherzadeh, A.R. Sardarian, I.D. Inaloo, New J. Chem. 45, 11852 (2021)

    Article  CAS  Google Scholar 

  15. A. Pourjavadi, M. Kohestanian, M. Yaghoubi, New J. Chem. 43, 18647 (2019)

    Article  CAS  Google Scholar 

  16. A. Pourjavadi, S. Rahemipoor, M. Kohestanian, Compos. Sci. Technol. 188, 107951 (2020)

    Article  CAS  Google Scholar 

  17. C. Qi, T. Guo, W. Xiong, Synlett 27, 2626 (2016)

    Article  CAS  Google Scholar 

  18. R. Turgis, G. Arrachart, C. Delchet, C. Rey, Y. Barré, S. Pellet-Rostaing, Y. Guari, J. Larionova, A. Grandjean, Chem. Mater. 25, 4447 (2013)

    Article  CAS  Google Scholar 

  19. S.D. Dhengale, V.M. Naik, G.B. Kolekar, C.V. Rode, P.V. Anbhule, Res. Chem. Intermed. 47, 3263 (2021)

    Article  CAS  Google Scholar 

  20. T. Chowdhury, S. Chatterjee, P. Banerjee, D. Sukul, M. Shukla, T. Chattopadhyay, J. Coord. Chem. 73, 754 (2020)

    Article  CAS  Google Scholar 

  21. M.J. Neufeld, J.L. Harding, M.M. Reynolds, A.C.S. Appl, Mater. Interfaces 7, 26742 (2015)

    Article  CAS  Google Scholar 

  22. V.C. Niculescu, G. Paun, V. Parvulescu, Appl. Organomet. Chem. 32, 2 (2018)

    Article  Google Scholar 

  23. Y. Su, Y. Zhang, C. Li, G. Xu, J. Bai, Catal. Lett. 150, 3196 (2020)

    Article  CAS  Google Scholar 

  24. S. Sanaei-Rad, H. Saeidiroshan, B. Mirhosseini-Eshkevari, M.A. Ghasemzadeh, Res. Chem. Intermed. 47, 2143 (2021)

    Article  CAS  Google Scholar 

  25. A. Pourjavadi, M. Kohestanian, N. Keshavarzi, Appl. Organomet. Chem. 34, 1 (2020)

    Article  Google Scholar 

  26. A. Pourjavadi, N. Keshavarzi, S.H. Hosseini, F.M. Moghaddam, Ind. Eng. Chem. Res. 57, 12314 (2018)

    Article  CAS  Google Scholar 

  27. J. Govan, Y.K. Gun’ko, Nanomaterials 4, 222 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  28. A. Pourjavadi, N. Keshavarzi, F.M. Moghaddam, S.H. Hosseini, Appl. Organomet. Chem. 32, 1 (2018)

    Google Scholar 

  29. W. Sun, W. Jiang, G. Zhu, Y. Li, J. Organomet. Chem. 873, 91 (2018)

    Article  CAS  Google Scholar 

  30. M. Qi, K. Zhang, S. Li, J. Wu, C. Pham-Huy, X. Diao, D. Xiao, H. He, New J. Chem. 40, 4480 (2016)

    Article  CAS  Google Scholar 

  31. Y. Wang, Y. Wang, L. Yu, J. Wang, B. Du, X. Zhang, Chem. Eng. J. 368, 115 (2019)

    Article  CAS  Google Scholar 

  32. A. Mouradzadegun, S. Elahi, F. Abadast, RSC Adv. 4, 31239 (2014)

    Article  CAS  Google Scholar 

  33. R. Tamura, T. Kawata, Y. Hattori, N. Kobayashi, M. Kimura, Macromolecules 50, 7978 (2017)

    Article  CAS  Google Scholar 

  34. P.A. Pourjavadi, N. Keshavarzi, F.M. Moghaddam, S.H. Hosseini, Chem. Sel. 3, 2716 (2018)

    CAS  Google Scholar 

  35. V. Kandathil, B.D. Fahlman, B.S. Sasidhar, S.A. Patil, S.A. Patil, New J. Chem. 41, 9531 (2017)

    Article  CAS  Google Scholar 

  36. S. Omar, B. Dutta, S. Natour, R. Abu-Reziq, J. Organomet. Chem. 818, 48 (2016)

    Article  CAS  Google Scholar 

  37. M.A. Barakat, R. Kumar, E.C. Lima, M.K. Seliem, J. Taiwan Inst. Chem. Eng. 119, 146 (2021)

    Article  CAS  Google Scholar 

  38. H. Veisi, T. Tamoradi, A. Rashtiani, S. Hemmati, B. Karmakar, J. Ind. Eng. Chem. 90, 379 (2020)

    Article  CAS  Google Scholar 

  39. L. Shiri, L. Heidari, M. Kazemi, Appl. Organomet. Chem. 32, 1 (2018)

    Google Scholar 

  40. C.I. Fernandes, M.D. Carvalho, L.P. Ferreira, C.D. Nunes, P.D. Vaz, J. Organomet. Chem. 760, 2 (2014)

    Article  CAS  Google Scholar 

  41. I. Sarvi, M. Gholizadeh, M. Izadyar, Catal. Lett. 147, 1162 (2017)

    Article  CAS  Google Scholar 

  42. G. Kang, J. Choi, T. Park, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  43. Q. Li, X. Tian, N. Wu, Y. Li, T. Pan, B. Zhang, Y. Duan, S. Wang, Y. Li, J. Appl. Polym. Sci. 138, 1 (2021)

    Google Scholar 

  44. A. Pourjavadi, M. Nazari, M. Kohestanian, S.H. Hosseini, Colloid Polym. Sci. 297, 917 (2019)

    Article  CAS  Google Scholar 

  45. M. Akkoç, N. Buğday, S. Altın, N. Kiraz, S. Yaşar, İ Özdemir, J. Organomet. Chem. 943, 121823 (2021)

    Article  Google Scholar 

  46. B. Zakerinasab, M.A. Nasseri, H. Hassani, M.M. Samieadel, Res. Chem. Intermed. 42, 3169 (2016)

    Article  CAS  Google Scholar 

  47. A. Radoń, A. Drygała, Ł Hawełek, D. Łukowiec, Mater. Charact. 131, 148 (2017)

    Article  Google Scholar 

  48. G. Liu, Q. Chen, E. Oyunkhand, S. Ding, N. Yamane, G. Yang, Y. Yoneyama, N. Tsubaki, Carbon N. Y. 130, 304 (2018)

    Article  CAS  Google Scholar 

  49. M.K. Bhunia, S.K. Das, P. Pachfule, R. Banerjee, A. Bhaumik, Dalt. Trans. 41, 1304 (2012)

    Article  CAS  Google Scholar 

  50. J. Liu, X. Zhang, B. Wen, Y. Li, J. Wu, Z. Wang, T. Wu, R. Zhao, S. Yang, Catal. Sci. Technol. 11, 3119 (2021)

    CAS  Google Scholar 

  51. D. Liu, X. Wang, Y. Chen, S. Yuan, Sci. China Chem. 59, 975 (2016)

    Article  CAS  Google Scholar 

  52. A. Pourjavadi, M. Kohestanian, C. Streb, Mater. Sci. Eng. C 108, 110418 (2020)

    Article  CAS  Google Scholar 

  53. M. Kohestanian, H. Bouhendi, M. Ghiass, J. Polym. Res. 24, 1 (2017)

    Article  CAS  Google Scholar 

  54. J. Grabska, J. Badzoka, C.W. Huck, K.B. Bec, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 262, 120085 (2021)

    Article  Google Scholar 

  55. Y. Shi, X. Zhang, H. Liu, J. Han, Z. Yang, L. Gu, Z. Tang 2001998, 1 (2020)

    Google Scholar 

  56. K. Un, K. Un, T. Ft-ir, and T. Xrd, 8 (2015).

  57. P. Puthiaraj, K. Pitchumani, Chem. A Eur. J. 20, 8761 (2014)

    Article  CAS  Google Scholar 

  58. F. Siadatnasab, S. Farhadi, M. Dusek, V. Eigner, A.A. Hoseini, A. Khataee, Ultrason. Sonochem. 64, 104727 (2020)

    Article  CAS  PubMed  Google Scholar 

  59. U. Kalsoom, A. Peristyy, P.N. Nesterenko, B. Paull, RSC Adv. 6, 38140 (2016)

    Article  CAS  Google Scholar 

  60. D. Schwarz, Y. Noda, J. Klouda, K. Schwarzová-Pecková, J. Tarábek, J. Rybáček, J. Janoušek, F. Simon, M.V. Opanasenko, J. Čejka, A. Acharjya, J. Schmidt, S. Selve, V. Reiter-Scherer, N. Severin, J.P. Rabe, P. Ecorchard, J. He, M. Polozij, P. Nachtigall, M.J. Bojdys, Adv. Mater. 29, 1 (2017)

    Article  Google Scholar 

  61. Y. Chen, W. Bi, L. Chen, Q. Liu, Int. J. Hydrogen Energy 46, 27567 (2021)

    Article  CAS  Google Scholar 

  62. M. Sadeghinia, M. Rezaei, A. Nemati Kharat, M. Namayandeh Jorabchi, B. Nematollahi, F. Zareiekordshouli, Mol. Catal. 484, 110776 (2020)

    Article  CAS  Google Scholar 

  63. B. Ghods, M. Rezaei, F. Meshkani, Ceram. Int. 42, 6883 (2016)

    Article  CAS  Google Scholar 

  64. L.D.S. Yadav, R. Patel, V.P. Srivastava, Tetrahedron Lett. 50, 1335 (2009)

    Article  CAS  Google Scholar 

  65. S. Bhadra, A. Saha, B.C. Ranu, Green Chem. 10, 1224 (2008)

    Article  CAS  Google Scholar 

  66. F. Nemati, A. Elhampour, S. Zulfaghari, Phosphorus Sulfur Silicon Relat. Elem. 190, 1692 (2015)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Prof. AP: project administration, supervision, resources, review & editing, funding acquisition, and validation. NK and MK: conceptualization, investigation, methodology, validation, formal analysis, writing-original draft, and funding acquisition. AS: methodology, validation, and formal analysis.

Corresponding authors

Correspondence to Nahid Keshavarzi or Ali Pourjavadi.

Ethics declarations

Ethical approval

We confirm that this manuscript is original, has not been published elsewhere and is not under consideration by another journal.

Consent to participate

We confirm that this manuscript is original, has not been published elsewhere and is not under consideration by another journal.

Consent for publication

All authors have approved the manuscript and agree to submit it to the Research on Chemical Intermediates journal.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3424 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzi, N., Kohestanian, M., Sabzevari, A. et al. Three-component coupling of boronic acids, amines, and carbon disulfide by a heterogeneous catalyst of copper (II) embedded in a highly porous and magnetic Schiff base network of melamine. Res Chem Intermed 49, 4423–4441 (2023). https://doi.org/10.1007/s11164-023-05081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05081-9

Keywords

Navigation