Skip to main content
Log in

Highly Dispersed Palladium Nanoparticle-Loaded Magnetic Catalyst (FeS@EP–AG–Pd) for Suzuki Reaction in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, an efficient epichlorohydrin–aminoguanidine-modified Fe3O4@SiO2 magnetic nanoparticles (FeS@EP–AG–Pd) with highly dispersed Palladium nanoparticles (Pd NPs) was reported for Suzuki reaction in water. After preparation of Fe3O4@SiO2 (FeS), special epichlorohydrin–aminoguanidine linker as a ligand with high content of heteroatoms was covalently bonded onto the FeS MNPs to increase their electron density. PdII ions were then loaded on surface of FeS@EP–AG MNPs and reduced for achieving the uniformly dispersed Pd NPs. FeS@EP–AG–Pd MNPs were performed in Suzuki reaction as an efficient catalyst in water as a green non-toxic solvent. Magnetically separable and recyclable FeS@EP–AG–Pd MNPs were then fully characterized by FTIR, SEM, TEM, TGA, VSM, XRD, and ICP–OES. The heterogeneous catalyst could also easily be recovered and reused with no loss of activity over 6 cycles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li CJ (2005) Chem Rev 105:3095

    Article  CAS  Google Scholar 

  2. Simon MO, Li CJ (2012) Chem Soc Rev 41:1415

    Article  CAS  Google Scholar 

  3. Miyaura N, Yanagi T, Suzuki A (1981) Synth Commun 11:513

    Article  CAS  Google Scholar 

  4. Seechurn CCCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 51:5062

    Article  Google Scholar 

  5. Li H, Seechurn CCJ, Colacot TJ (2012) ACS Catal 2:1147

    Article  CAS  Google Scholar 

  6. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Chem Rev 102:1359

    Article  CAS  Google Scholar 

  7. Littke AF, Fu GC (2002) Angew Chem Int Ed 41:4176.

    Article  CAS  Google Scholar 

  8. Kotha S, Lahiri K, Kashinath D (2002) Tetrahedron 58:9633

    Article  CAS  Google Scholar 

  9. Bellina F, Carpita A, Rossi R (2004) Synthesis 15:2419

    Google Scholar 

  10. Slagt VF, de Vries AH, De Vries JG, Kellogg RM (2009) Org Process Res Dev 14:30.

    Article  Google Scholar 

  11. Corbet JP, Mignani G (2006) Chem Rev 106:2651

    Article  CAS  Google Scholar 

  12. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V (2011) Chem Soc Rev 40:5181

    Article  CAS  Google Scholar 

  13. Han FS (2013) Chem Soc Rev 42:5270

    Article  CAS  Google Scholar 

  14. Seechurn CCCJ, Kitching MO, Colacot TJ, Snieckus V (2012) Angew Chem Int Ed 52:5062

    Article  Google Scholar 

  15. Fihri A, Bouhrara M, Nekoueishahraki B et al (2011) Chem Soc Rev 40:5181

    Article  CAS  Google Scholar 

  16. Maluenda I, Navarro O (2015) Molecules 20:7528

    Article  CAS  Google Scholar 

  17. Li H, Seechurn CCCJ, Colacot TJ (2012) ACS Catal 2:1147

    Article  CAS  Google Scholar 

  18. Kumar A, Rao GK, Kumar S, Singh AK (2013) Dalton Trans 42:5200

    Article  CAS  Google Scholar 

  19. Rossi R, Bellina F, Lessi M (2012) Adv Synth Catal 354:1181

    Article  CAS  Google Scholar 

  20. Grirrane A, Corma A, García H (2008) Science 322:1661

    Article  CAS  Google Scholar 

  21. Kesavan L, Tiruvalam R, Ab Rahim MH, bin Saiman MI, Enache DI, Jenkins RL, Kiely CJ (2011) Science 331:195

    Article  CAS  Google Scholar 

  22. Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Angew Chem Int Ed 46:7251

    Article  CAS  Google Scholar 

  23. Molnar A (2011) Chem Rev 111:2251

    Article  CAS  Google Scholar 

  24. Sheldon RA (2012) Chem Soc Rev 41:1437

    Article  CAS  Google Scholar 

  25. Shaughnessy KH, DeVasher RB (2005) Curr Org Chem 9:585

    Article  CAS  Google Scholar 

  26. Chatterjee A, Ward TR (2016) Catal Lett 146:820

    Article  CAS  Google Scholar 

  27. Decottignies A, Fihri A, Azemar G, Djedaini-Pilard F, Len C (2013) Catal Commun 32:101.

    Article  CAS  Google Scholar 

  28. Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Chem Sus Chem 3:502.

    Article  CAS  Google Scholar 

  29. Polshettiwar V, Len C, Fihri A (2009) Coord Chem Rev 253:2599

    Article  CAS  Google Scholar 

  30. Hervé G, Sartori G, Enderlin G, Mackenzie G, Len C (2014) RSC Adv 4:18558

    Article  Google Scholar 

  31. Gallagher-Duval S, Hervé G, Sartori G, Enderlin G, Len C (2013) New J Chem 37:1989

    Article  CAS  Google Scholar 

  32. Nam TS (2011) Chin J Catal 32:1667.

    Article  Google Scholar 

  33. Sun Y, Yan M-Q, Liu Y et al (2015) RSC Adv 5:71437

    Article  CAS  Google Scholar 

  34. Burda E, Hummel W, Groger H (2008) Angew Chem Int Ed 47:9551

    Article  CAS  Google Scholar 

  35. Borchert S, Burda E, Schatz J et al (2012) J Mol Catal B 84:89

    Article  CAS  Google Scholar 

  36. Mieczyn´ska E, Borkowski T, Cypryk M et al (2014) Appl Catal A 470:24.

    Article  Google Scholar 

  37. Borah BJ, Borah SJ, Saikia K, Dutta DK (2014) Appl Catal A 469:350.

    Article  CAS  Google Scholar 

  38. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222

    Article  CAS  Google Scholar 

  39. Mak SY, Chen DH (2004) Dyes Pigments 61:93

    Article  CAS  Google Scholar 

  40. Borhade SR, Waghmode SB (2011) Beilstein J Org Chem 7:310

    Article  CAS  Google Scholar 

  41. Zhu MY, Diao GW (2011) J Phys Chem C 115:24743

    Article  CAS  Google Scholar 

  42. Yang J, Wang D, Liu W, Zhang X, Bian F, Yu W (2013) Green Chem 15:3429.

    Article  CAS  Google Scholar 

  43. Abu-Reziq R, Wang D, Post M, Alper H (2008) Chem Mater 20:2544

    Article  CAS  Google Scholar 

  44. Rosario-Amorin D, Wang W, Gaboyard M, Clerac R, Nlate S, Heuze K (2009) Chem Eur J 15:12636

    Article  CAS  Google Scholar 

  45. Rosario-Amorin D, Gaboyard M, Clerac R, Vellutini L, Nlate S, Heuze K (2012) Chem Eur J 18:3305

    Article  CAS  Google Scholar 

  46. Bui NT, Dang TB, Le HV, Phan NTS (2011) Chin J Catal 32:1667

    Article  CAS  Google Scholar 

  47. Bolton WK, Abdel-Rahman E (2002) Expert Opin Investig Drugs 11:565

    Article  Google Scholar 

  48. Li DP, Zhang YR, Zhao XX, Zhao BX (2013) Chem Eng J 232:425

    Article  CAS  Google Scholar 

  49. Kashin AS, Ananikov VP (2013) J Org Chem 78:11117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged for partially financial support of this study (Grant No. 3/41258) by Research Council of Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Gholizadeh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2666 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvi, I., Gholizadeh, M. & Izadyar, M. Highly Dispersed Palladium Nanoparticle-Loaded Magnetic Catalyst (FeS@EP–AG–Pd) for Suzuki Reaction in Water. Catal Lett 147, 1162–1171 (2017). https://doi.org/10.1007/s10562-017-2009-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2009-5

Keywords

Navigation