Skip to main content
Log in

Direct Hybridization of Pd on Metal–Organic Framework (MOF)@PAN(C) to Catalyze Suzuki Reaction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The C–C bond constructed by Suzuki cross-coupling reaction is very important in the fields of medicine, chemical industry, etc. Here we support palladium on the surface of MOF@ partially carbonized PAN written as PAN(C) by solvothermal method to reduce the agglomeration of palladium and increase the catalytic performance of palladium. The physicalchemical properties of as-prepared catalysts were characterized using field emission scanning electron microscopy, transmission electron microscope (TEM), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Raman spectra, Fourier-transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Temperature programmed reduction (H2-TPR). The catalyst is used in the Suzuki reaction, the yield is close to 100% and no significant reductions in performance after six reactions. It was found that there were synergistic effect and heterostructures between Ni-MOF and supported Pd, especially, the Pd and the carrier have a strong acting force, which ensures that the catalyst is used multiple times.

Graphic Abstract

A catalyst for hybridizing palladium on a composite support combining MOF and carbon fiber, Pd1-Ni4-MOF@CNFs are prepared via electrospinning technology followed by carbonization and a solvothermal process. They can be directly served as catalyst for Suzuki reaction. Most importantly, due to the synergistic effect and the influence of the heterostructure, the reaction yield was close to 100%, and the performance did not decrease significantly after six reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sang X, Xie Y, Yilmaz DE, Lotfi R, Alhabeb M, Ostadhossein A, Anasor B, Sun W, Xiao XLK, Kent PRC, Duin ACT, Gogotsi Y, Unocic RR (2018) Nat. Commun. 9:2266

    PubMed  PubMed Central  Google Scholar 

  2. Chen J, Cui P, Zhao G, Rui K, Lao M, Chen Y, Zheng X, Jiang Y, Pan H, Dou SX, Sun W (2019) Angew. Chem. Int. Ed. 58:12540–12544

    CAS  Google Scholar 

  3. Luo Z-Z, Zhang Y, Zhang C, Tan HT, Li Z, Abutaha A, Wu X-L, Xiong Q, Khor KA, Hippalgaonkar K, Xu J, Hng HH, Yan Q (2017) Adv Energy Mater 7:1601285

    Google Scholar 

  4. Gonzalez MI, Turkiewicz AB, Darago LE, Oktawiec J, Bustillo K, Grandjean F, Long GJ, Long JR (2020) Nature 577:64–68

    CAS  PubMed  Google Scholar 

  5. Chen Y, Wang X, Lao M, Rui K, Zheng X, Yu H, Ma J, Dou SX, Sun W (2019) Nano Energy 64:103918

    CAS  Google Scholar 

  6. Rasero-Almansa A, Corma A, Iglesias M, Sanchez F (2013) ChemCatChem 5:3092–3100

    CAS  Google Scholar 

  7. He Y, Zhou W, Qian G, Chen B (2014) Chem Soc Rev 43:5657

    CAS  PubMed  Google Scholar 

  8. Lo SH, Feng L, Tan K, Huang Z, Yuan S, Wang KY, Li BH, Liu W-L, Day GS, Tao S, Yang CC, Luo TT, Lin CH, Wang SL, Billinge SJL, Lu KL, Chabal YJ, Zou X, Zhou HC (2020) Nat. Chem. 12:90–97

    PubMed  Google Scholar 

  9. Gao J, Su Y, Liu Y, Guan J, He M, Zhang R, Jiang Z (2018) J Membr Sci 566:268–277

    Google Scholar 

  10. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT (2012) Chem Rev 112:1105

    CAS  PubMed  Google Scholar 

  11. Liu W, Huang J, Yang Q, Wang S, Sun X, Zhang W, Liu J, Huo F (2017) Angew Chem 129:5604

    Google Scholar 

  12. Wang B, Liu W, Zhang W, Liu J (2017) Nano Res 10:3826

    CAS  Google Scholar 

  13. Yang Q, Liu W, Wang B, Zhang W, Zeng X, Zhang C, Qin Y, Sun X, Wu T, Liu J, Huo F, Lu J (2017) Nat Commun 8:14429

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Meng J, Niu C, Xu L, Li J, Liu X, Wang X, Wu Y, Xu X, Chen W, Li Q, Zhu Z, Zhu D, Mai L (2017) J Am Chem Soc 139:8212–8221

    CAS  PubMed  Google Scholar 

  15. Zhou S, Chen K, Huang J, Wang L, Zhang M, Bai B, Liu H, Wang Q (2020) Appl Catal B 266:118513

    Google Scholar 

  16. Wei J, Li H, Sun D, Ma QLJ, Chen X, Zhu X, Zheng N (2018) Adv Funct Mater 28:1706310

    Google Scholar 

  17. Huang X, Li Y, Chen Y, Zhou H, Duan X, Huang Y (2013) Angew Chem Int Ed 52:6063–6067

    CAS  Google Scholar 

  18. Chen C, Li C, Shi Z (2016) Adv Sci 3:1600029

    Google Scholar 

  19. Luo M, Sun Y, Zhang X, Qin Y, Li M, Li Y, Li C, Yang Y, Wang L, Gao P, Lu G, Guo S (2018) Adv Mater 30:1705515

    Google Scholar 

  20. Liu X, Locozzia J, Wang Y, Cui X, Chen Y, Zhao S, Li Z, Lin Z (2017) Energy Environ Sci 10:402–434

    CAS  Google Scholar 

  21. Niu G, Zhou M, Yang X, Park J, Lu N, Wang J, Kim MJ, Wang L, Xia Y (2016) Nano Lett 16:3850–3857

    CAS  PubMed  Google Scholar 

  22. Liu Z, Qi J, Liu M, Zhang S, Fan Q, Liu H, Liu K, Zheng H, Yin Y, Gao C (2018) Angew Chem 130:11852–11856

    Google Scholar 

  23. Ouyang T, Ye Y-Q, Wu C-Y, Xiao K, Liu Z-Q (2019) Angew Chem Int Ed 58:4923–4928

    CAS  Google Scholar 

  24. Strickland K, Miner E, Jia Q, Tylus U, Ramaswamy N, Liang W, Sougrati M-T, Jaouen F, Mukerjee S (2015) Nat Commun 6:7343

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen Y, Zhou Q, Zhao G, Yu Z, Wang X, Dou S, Sun W (2018) Adv Funct Mater 28:1705583

    Google Scholar 

  26. Song G, Xin F, Chen J, Yin X (2014) Appl Catal A 473:90–95

    CAS  Google Scholar 

  27. Zhang J, Xiao F, Xiao G, Liu B (2016) Appl Catal A 521:50–56

    CAS  Google Scholar 

  28. Ji S, Chen Y, Zhao S, Chen W, Shi L, Wang Y, Dong J, Li Z, Li F, Chen C, Peng Q, Li J, Wang D, Li Y (2019) Angew Chem Int Ed 131:4315–4319

    Google Scholar 

  29. Yuan N, Pascanu V, Huang Z, Valiente A, Heidenreich N, Leudner S, Inge AK, Gaar J, Stock N, Persson I, Martin-Mature B, Zou X (2018) J Am Chem Soc 140:8206–8217

    CAS  PubMed  Google Scholar 

  30. Zheng F, Zhang C, Gao X, Du C, Zhuang Z, Chen W (2019) Electrochim Acta 306:627–634

    CAS  Google Scholar 

  31. Suzuki A (2011) Angew Chem Int Ed 50:6722–6737

    CAS  Google Scholar 

  32. Shang N, Feng C, Zhang H, Gao S, Tang R, Wang C, Wang Z (2013) Catal Commun 40:111–115

    CAS  Google Scholar 

  33. Mun Y, Lee S, Cho A, Kim S, Han JW, Lww J (2019) Appl Catal B 246:82–88

    CAS  Google Scholar 

  34. Rai RK, Gupta K, Behrens S, Li J, Xu Q, Singh SK (2015) ChemCatChem 7:1806–1812

    CAS  Google Scholar 

  35. Du P, Dong Y, Liu C, Wei W, Liu D, Liu P (2018) J Colloid Interface Sci 518:57–68

    CAS  PubMed  Google Scholar 

  36. Yu D, Bai J, Wang J, Li C (2015) J Catal 365:195–203

    Google Scholar 

  37. Shang N, Gao S, Feng C, Zhang H, Wang C, Wang Z (2013) RSC Adv 3:21863–21868

    CAS  Google Scholar 

  38. Jiang H, Gao Q, Wan S, Chen Y, Zhang M (2019) J CO2 Utilization 31:167–172

    CAS  Google Scholar 

  39. Dong W, Zhang L, Wang C, Feng C, Shang N, Gao S, Wang C (2016) RSC Adv 6:37118–37123

    CAS  Google Scholar 

  40. Chlebda DK, Jędrzejczyk RJ, Jodłowski PJ, Łojewska J (2017) J Raman Spectrosc 48:1871–1880

    CAS  Google Scholar 

  41. Bao G, Bai J, Li C, Yu D (2018) Catal Lett 148:3389–3401

    CAS  Google Scholar 

  42. Kang X, Lyu K, Li L, Li J, Kimberley L, Wang B, Liu L, Cheng Y, Frogley MM, Rudic S, Ramirez-Cuesta AJ, Dryfe RAW, Han B, Yang S, Schroder M (2019) Nat Commun 10:4466

    PubMed  PubMed Central  Google Scholar 

  43. Xu W, Fan G, Chen J, Li J, Zhang L, Zhu S, Su X, Cheng F, Chen J (2019) Angew Chem Int Ed. https://doi.org/10.1002/anie.201914335

    Article  Google Scholar 

  44. Weng X, Shi B, Liu A, Sun J, Xiong Y, Wan H, Zheng S, Dong L, Chen Y (2019) Appl Surf Sci 497:143747

    CAS  Google Scholar 

  45. Xie J, Wang J, Wang H, Li H, Wang J, Shen M (2018) Catal Lett 148:2596

    CAS  Google Scholar 

  46. Rui K, Zhao G, Lao M, Cui P, Zheng X, Zheng X, Zhu J, Huang W, Dou SX, Sun W (2019) Nano Lett 19:8447–8453

    CAS  PubMed  Google Scholar 

  47. Jiao Y, Pei J, Yan C, Chen D, Hu Y, Chen G (2016) J Mater Chem A 4:13344–13351

    CAS  Google Scholar 

  48. Gao S, Shang N, Feng C, Wang C, Wang Z (2014) RSC Adv 4(74):39242–39247

    CAS  Google Scholar 

  49. Gou S, Bai J, Liang H, Li C (2016) RSC Adv 6:62181–62185

    Google Scholar 

  50. Gou S, Bai J, Liang H, Li C (2016) Chin Chem Lett 27:459–463

    Google Scholar 

  51. Ding SY, Gao J, Wang Q, Zhang Y, Song WG, Su CY, Wang W (2011) J Am Chem Soc 133:19816–19822

    CAS  PubMed  Google Scholar 

  52. Bao G, Bai J, Li C (2019) Org Chem Front 6:352–361

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No. 21766022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11251 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Zhang, Y., Li, C. et al. Direct Hybridization of Pd on Metal–Organic Framework (MOF)@PAN(C) to Catalyze Suzuki Reaction. Catal Lett 150, 3196–3205 (2020). https://doi.org/10.1007/s10562-020-03213-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03213-z

Keywords

Navigation