Skip to main content

Advertisement

Log in

Recent advancements in Se- and Te-enriched cocatalysts for boosting photocatalytic splitting of water to produce hydrogen

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

One of the most significant boosts for reducing energy consumption and environmental pollution is expected to be the photocatalytic splitting of water, which is a cost-effective and ecologically beneficial method of hydrogen (H2) production from water under sunlight irradiation. Researchers have studied various photocatalytic materials and systems for the last 50 years; however, there are still some challenges in enhancing the lifetime of photo-generated charge carriers, their efficient reactivity, and enabling the use of longer wavelengths of incident light for an efficient production of H2 under sunlight irradiation. In this situation, recent studies have shown that selenium (Se)- and tellurium (Te)-enriched cocatalysts is crucial in photocatalytic systems for the efficient conversion of solar energy into H2 production. They provide a variety of benefits, including efficient photo-generation of charge carriers and their efficient transfer, increase in the number of active sites, enhancement in the electronic conductivity, and optimization of cocatalyst-Hads bonds. In the present review, the advancements in photocatalytic H2 evolution reactions (HER) using Se- and Te-enriched cocatalysts are discussed in detail. In particular, the construction of novel transition metal-based Se- and Te-enriched cocatalysts are summarized, followed by their benefits, comparison, and mechanisms to improve photocatalytic water splitting. Finally, as conclusions, a comprehensive outlook on the research development of Se- and Te-enriched cocatalysts is identified as a major challenge, and various ways to overcome the lower efficiency of photocatalytic HER are suggested by showing an appearance of cocatalysts enriched in Se and Te elements is one of the highlights in the photocatalytic HER research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Copyright 2020, Elsevier). d Schematic describing the formation process of NiSe/g-C3N4 composites, e cumulated production and f photocatalytic H2 production rates of g-C3N4 and NiSe/g-C3N4 photocatalysts with various content of NiSe [105](Copyright 2021, Elsevier)

Fig. 6

(Copyright 2022, Elsevier). c TEM, HRTEM, and HAADF image of 5 wt% NiSe/Mn0.5Cd0.5S, d The band structure and charge transfer and separation of NiSe/Mn0.5Cd0.5S under visible light [107] (Copyright 2020, Elsevier)

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. J. Xu, M. Mao, H. Yu, Res. Chem. Intermed. 46, 1823 (2020)

    Article  CAS  Google Scholar 

  2. X. Chen, S. Shen, L. Guo et al., Chem. Rev. 110(11), 6503 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. J. Xu, F. Huo, Y. Zhao et al., Int. J. Hydrogen Energy 43(18), 8674 (2018)

    Article  CAS  Google Scholar 

  4. H. Yu, J. Xu, H. Guo et al., RSC Adv. 7(89), 56417 (2017)

    Article  CAS  Google Scholar 

  5. H. Yu, J. Xu, Z. Liu, et al., J. Mater. Sci. 5315271 (2018)

  6. H.-B. Kim, S.P. Eckel, J.H. Kim et al., Allergy Asthma. Immunol. Res. 8(1), 12 (2016)

    CAS  Google Scholar 

  7. A. Mukherji, B. Seger, G.Q. Lu et al., ACS Nano 5(5), 3483 (2011)

    Article  CAS  PubMed  Google Scholar 

  8. M. Matsuoka, M. Kitano, M. Takeuchi et al., Catal. Today 122(1–2), 51 (2007)

    Article  CAS  Google Scholar 

  9. M. Kitano, K. Tsujimaru, M. Anpo, Top. Catal. 494, 4 (2008)

    Article  Google Scholar 

  10. M. Tayyab, Y. Liu, S. Min et al., Chinese. J. Catal. 43(4), 1165 (2022)

    CAS  Google Scholar 

  11. C.-W. Huang, C.-H. Liao, J.C. Wu et al., Int. J. Hydrogen Energy 35(21), 12005 (2010)

    Article  CAS  Google Scholar 

  12. Z. Ye, W. Yue, M. Tayyab et al., Dalton Trans. 51(48), 18542 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Liu, M. Tayyab, W. Pei et al., Small 19(21), 2208117 (2023)

    Article  CAS  Google Scholar 

  14. Z. Yao, X. Hou, Y. He et al., Res. Chem. Intermed. 45, 4927 (2019)

    Article  CAS  Google Scholar 

  15. M. Xing, B. Qiu, M. Du et al., Adv. Funct. Mater. 27(35), 1702624 (2017)

    Article  Google Scholar 

  16. Y. Liu, Q. Zhu, M. Tayyab et al., Sol. RRL 5(11), 2100536 (2021)

    Article  CAS  Google Scholar 

  17. G. Liu, M. Feng, M. Tayyab et al., J. Hazard. Mater. 412, 125224 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. D. Zhao, Q. Wu, S. Wang et al., Res. Chem. Intermed. 42, 5479 (2016)

    Article  CAS  Google Scholar 

  19. G. Li, J. Shi, G. Zhang et al., Res. Chem. Intermed. 43, 5137 (2017)

    Article  CAS  Google Scholar 

  20. S.-C. Moon, Y. Matsumura, M. Kitano et al., Res. Chem. Intermed. 29(3), 233 (2003)

    Article  CAS  Google Scholar 

  21. K. Domen, J.N. Kondo, M. Hara et al., Bull. Chem. Soc. Jpn. 73(6), 1307 (2000)

    Article  CAS  Google Scholar 

  22. W. Kong, B. Tian, J. Zhang et al., Res. Chem. Intermed. 39, 1701 (2013)

    Article  CAS  Google Scholar 

  23. M. Tayyab, Y. Liu, Z. Liu et al., J. Colloid Interface Sci. 628, 500 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. T. Sreethawong, S. Yoshikawa, Int. J. Hydrogen Energy 31(6), 786 (2006)

    Article  CAS  Google Scholar 

  25. J. Li, Y. Yin, E. Liu et al., J. Hazard. Mater. 321, 183 (2017)

    Article  CAS  PubMed  Google Scholar 

  26. Y. Dang, J. Tian, W. Wang et al., J. Colloid Interface Sci. 633, 649 (2023)

    Article  CAS  PubMed  Google Scholar 

  27. X. Zheng, Y. Song, Y. Liu et al., Coord. Chem. Rev. 475, 214898 (2023)

    Article  CAS  Google Scholar 

  28. Y.J. Yuan, D.Q. Chen, Y.W. Huang et al., Chemsuschem 9(9), 1003 (2016)

    Article  CAS  PubMed  Google Scholar 

  29. F. Jiang, B. Pan, D. You, et al., Catal. Commun. 8539 (2016)

  30. Z. Pan, H. Yoshida, L. Lin et al., Res. Chem. Intermed. 47(1), 225 (2021)

    Article  CAS  Google Scholar 

  31. M. Anpo, S. Kishiguchi, Y. Ichihashi et al., Res. Chem. Intermed. 27(4), 459 (2001)

    Article  CAS  Google Scholar 

  32. M. Anpo, Res. Chem. Intermed. 11(1), 67 (1989)

    Article  CAS  Google Scholar 

  33. M. Anpo, Y. Ichihashi, M. Takeuchi et al., Res. Chem. Intermed. 24(2), 143 (1998)

    Article  CAS  Google Scholar 

  34. A. Furube, T. Asahi, H. Masuhara et al., Res. Chem. Intermed. 27(1), 177 (2001)

    Article  CAS  Google Scholar 

  35. S.U. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297(5590), 2243 (2002)

    Article  CAS  PubMed  Google Scholar 

  36. T. Umebayashi, T. Yamaki, S. Tanaka et al., Chem. Lett. 32(4), 330 (2003)

    Article  CAS  Google Scholar 

  37. C. Huang, Y. Wansheng, D. Liqin et al., Chinese. J. Catal. 27(3), 203 (2006)

    Google Scholar 

  38. M.A. Khan, O.-B. Yang, Catal. Today 146(1–2), 177 (2009)

    Article  CAS  Google Scholar 

  39. H. Kominami, S.-Y. Murakami, J.-I. Kato et al., J. Phys. Chem. B 106(40), 10501 (2002)

    Article  CAS  Google Scholar 

  40. M. Anpo, T. Shima, S. Kodama et al., J. Phys. Chem. 91(16), 4305 (1987)

    Article  CAS  Google Scholar 

  41. A. Maira, K.L. Yeung, C. Lee et al., J. Catal. 192(1), 185 (2000)

    Article  CAS  Google Scholar 

  42. T. Torimoto, N. Nakamura, S. Ikeda et al., Phys. Chem. Chem. Phys. 4(23), 5910 (2002)

    Article  CAS  Google Scholar 

  43. T. Ohno, K. Sarukawa, M. Matsumura, New J. Chem. 26(9), 1167 (2002)

    Article  CAS  Google Scholar 

  44. X. Wang, K. Maeda, A. Thomas et al., Nat. Mater 8(1), 76 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. K. Maeda, X. Wang, Y. Nishihara et al., J. Phys. Chem. C 113(12), 4940 (2009)

    Article  CAS  Google Scholar 

  46. S. Yan, Z. Li, Z. Zou, Langmuir 25(17), 10397 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51(1), 68 (2012)

    Article  CAS  Google Scholar 

  48. J. Zhang, M. Grzelczak, Y. Hou et al., Chem. Sci. 3(2), 443 (2012)

    Article  CAS  Google Scholar 

  49. G. Zhang, Z.-A. Lan, L. Lin et al., Chem. Sci. 7(5), 3062 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Z. Pan, Y. Zheng, F. Guo et al., Chemsuschem 10(1), 87 (2017)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Hou, F. Zuo, A.P. Dagg et al., Adv. Mater. 26(29), 5043 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. Y.-B. Du, N. Wang, X.-N. Li et al., Res. Chem. Intermed. 47(12), 5175 (2021)

    Article  CAS  Google Scholar 

  53. S. Fukumoto, M. Kitano, M. Takeuchi et al., Catal. Lett. 127, 39 (2009)

    Article  CAS  Google Scholar 

  54. R. Tode, A. Ebrahimi, S. Fukumoto et al., Catal. Lett. 135, 10 (2010)

    Article  CAS  Google Scholar 

  55. M. Kitano, M. Takeuchi, M. Matsuoka et al., Catal. Today 120(2), 133 (2007)

    Article  CAS  Google Scholar 

  56. M. Matsuoka, M. Kitano, M. Takeuchi et al., Top. Catal. 35, 305 (2005)

    Article  CAS  Google Scholar 

  57. Y.I. Choi, S. Lee, S.K. Kim et al., J. Alloys Compd. 675, 46 (2016)

    Article  CAS  Google Scholar 

  58. M.E. Khan, M.M. Khan, M.H. Cho, J. Colloid Interface Sci. 482, 221 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. M. Tayyab, Y. Liu, Z. Xu, et al., in UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation. eds. X. Wang, M. Anpo, and X. Fu (Wiley-VCH, 2023), p. 93

  60. S. Adabala, D.P. Dutta, J. Environ. Chem. Eng. 10(3), 107763 (2022)

    Article  CAS  Google Scholar 

  61. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements, (Elsevier, 2012)

  62. A. Abbas, S. Mansoor, M.H. Nawaz et al., RSC Adv. 13(17), 11537 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. A. Mushtaq, X. Ma, J. Farheen et al., Colloids Surf. Physicochem. Eng. Aspects 674, 131911 (2023)

    Article  CAS  Google Scholar 

  64. R. da Silva, R. Barbosa, R.R. Mancano et al., ACS Appl. Nano Mater. 2(2), 890 (2019)

    Article  Google Scholar 

  65. N. Mishra, V. Vasavi Dutt and M.P. Arciniegas, Chem. Mater. 31(22), 9216 (2019)

  66. S. Matussin, M. Harunsani, A. Tan et al., Eng 8(8), 3040 (2020)

    CAS  Google Scholar 

  67. M. Hojamberdiev, Y. Cai, J.J.M. Vequizo et al., Green Chem. 20(16), 3845 (2018)

    Article  CAS  Google Scholar 

  68. M.M. Khan, S.F. Adil, A. Al-Mayouf, J. Saudi Chem. Soc. 19(5), 462 (2015)

    Article  Google Scholar 

  69. M. Bashir, M. Batool, N. Arif et al., Coord. Chem. Rev. 492, 215286 (2023)

    Article  CAS  Google Scholar 

  70. H. Meng, M. An, T. Luo, et al., in Chalcogenide(Elsevier, 2020), pp. 31

  71. C. Han, Y. Bai, Q. Sun et al., Adv. Sci. 3(5), 1500350 (2016)

    Article  Google Scholar 

  72. S. Mansoor, A. Rhouati, S. Riaz et al., Anal. Biochem. 639, 114540 (2022)

    Article  CAS  PubMed  Google Scholar 

  73. L. Zheng, W. Zhang, X. Xiao, Korean J. Chem. Eng. 33, 107 (2016)

    Article  CAS  Google Scholar 

  74. Q. Wang, J. Huang, H. Sun et al., Chemsuschem 11(10), 1708 (2018)

    Article  CAS  PubMed  Google Scholar 

  75. S. Shanmugaratnam, E. Yogenthiran, R. Koodali et al., Energies 14(24), 8265 (2021)

    Article  CAS  Google Scholar 

  76. M.M. Khan, A. Rahman, Catal. 12(11), 1338 (2022)

    Article  CAS  Google Scholar 

  77. Y. Liu, Y. Zheng, M. Tayyab, et al., Catal. Lett., https://doi.org/10.1007/s10562-023-04346-7(2023)

  78. G. Lucovsky, R. White, Phys. Rev. B 8(2), 660 (1973)

    Article  CAS  Google Scholar 

  79. K. Shportko, S. Kremers, M. Woda et al., Nat. Mater 7(8), 653 (2008)

    Article  CAS  PubMed  Google Scholar 

  80. M. Kastner, Phys. Rev. Lett. 28(6), 355 (1972)

    Article  CAS  Google Scholar 

  81. M. Kastner, H. Fritzsche, Philos. Mag. B 37(2), 199 (1978)

    Article  CAS  Google Scholar 

  82. J. Wang, S. Lin, N. Tian et al., Adv. Funct. Mater. 31(9), 2008008 (2021)

    Article  CAS  Google Scholar 

  83. M. Li, S. Yu, H. Huang et al., Angew. Chem. Int. Ed. 58(28), 9517 (2019)

    Article  CAS  Google Scholar 

  84. W. Zhang, A.R. Mohamed, W.J. Ong, Angew. Chem. Int. Ed. 59(51), 22894 (2020)

    Article  CAS  Google Scholar 

  85. N.N. Vu, S. Kaliaguine, T.O. Do, Adv. Funct. Mater. 29(31), 1901825 (2019)

    Article  Google Scholar 

  86. X. Lv, C. Hu, J. Shang et al., Catal. Today 335, 468 (2019)

    Article  CAS  Google Scholar 

  87. V. Sanap and B. Pawar, Chalcogenide Lett. 6(9), (2009)

  88. K.S. Bhat, H. Nagaraja, Mater. Res. Innovations 25(1), 29 (2021)

    CAS  Google Scholar 

  89. M. Liu, F. Xue, X. Wang et al., Chem. Eng. J. 341, 335 (2018)

    Article  CAS  Google Scholar 

  90. Z. Li and K. Aik Khor, in Encyclopedia of Biomedical Engineering, ed. R. Narayan (Elsevier, Oxford, 2019), pp. 203

  91. D. Gao, W. Zhong, Y. Liu et al., Appl. Catal. B: Environ. 290, 120057 (2021)

    Article  CAS  Google Scholar 

  92. M.K. Devaraju, I. Honma, Adv. Energy Mater. 2(3), 284 (2012)

    Article  CAS  Google Scholar 

  93. E.Y. Muslih, B. Munir and M.M. Khan, in chalcogenide-based nanomaterials as photocatalysts(Elsevier, 2021), pp. 7

  94. K. Zhang, Y. Li, S. Deng et al., ChemElectroChem 6(14), 3530 (2019)

    Article  CAS  Google Scholar 

  95. X. Xia, L. Wang, N. Sui et al., Nanoscale 12(23), 12249 (2020)

    Article  CAS  PubMed  Google Scholar 

  96. W. Zhong, B. Zhao, H. Yu et al., Sol. RRL 6(1), 2100832 (2022)

    Article  CAS  Google Scholar 

  97. S. Lee, S. Cha, Y. Myung et al., ACS Appl. Mater. Interfaces 10(39), 33198 (2018)

    Article  CAS  PubMed  Google Scholar 

  98. H. Wu, X. Lu, G. Zheng et al., Adv. Energy Mater. 8(14), 1702704 (2018)

    Article  Google Scholar 

  99. R. Shen, J. Xie, Q. Xiang et al., Chin. J. Catal. 40(3), 240 (2019)

    Article  CAS  Google Scholar 

  100. H. Li, P. Wang, X. Yi et al., Appl. Catal. B: Environ. 264, 118504 (2020)

    Article  Google Scholar 

  101. Y. Liu, P. Geng, J. Wang et al., J. Colloid Interface Sci. 512, 784 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. J. Wang, J. Chen, P. Wang et al., Appl. Catal. B: Environ. 239, 578 (2018)

    Article  CAS  Google Scholar 

  103. Y. Yang, D. Zhang, Q. Xiang, Nanoscale 11(40), 18797 (2019)

    Article  CAS  PubMed  Google Scholar 

  104. D. Gao, X. Wu, P. Wang et al., Chem. Eng. J. 408, 127230 (2021)

    Article  CAS  Google Scholar 

  105. Z. Chen, Y. Gao, F. Chen et al., Chem. Eng. J. 413, 127474 (2021)

    Article  CAS  Google Scholar 

  106. J. Jia, L. Zheng, K. Li et al., Chem. Eng. J. 429, 132432 (2022)

    Article  CAS  Google Scholar 

  107. X. Jiang, H. Gong, Q. Liu et al., Appl. Catal. B: Environ. 268, 118439 (2020)

    Article  CAS  Google Scholar 

  108. H. Shu, D. Zhou, F. Li et al., ACS Appl. Mater. Interfaces 9(49), 42688 (2017)

    Article  CAS  PubMed  Google Scholar 

  109. F. Zhang, Y. Pei, Y. Ge et al., Adv. Mater. Interfaces 5(8), 1701507 (2018)

    Article  Google Scholar 

  110. F. Wang, Y. Li, T.A. Shifa et al., Angew. Chem. Int. Ed. 55(24), 6919 (2016)

    Article  CAS  Google Scholar 

  111. X.-H. Zhang, N. Li, J. Wu et al., Appl. Catal. B: Environ. 229, 227 (2018)

    Article  CAS  Google Scholar 

  112. S. Deng, Y. Zhong, Y. Zeng et al., Adv. Mater. 29(21), 1700748 (2017)

    Article  Google Scholar 

  113. T. Xiang, S. Tao, W. Xu et al., ACS Nano 11(6), 6483 (2017)

    Article  CAS  PubMed  Google Scholar 

  114. D. Gao, J. Xu, F. Chen et al., Appl. Catal. B: Environ. 305, 121053 (2022)

    Article  CAS  Google Scholar 

  115. Z. Liang, X. Meng, Y. Xue et al., J. Colloid Interface Sci. 598, 172 (2021)

    Article  CAS  PubMed  Google Scholar 

  116. K. Wang, Z. Xing, D. Meng et al., Appl. Catal. B: Environ. 281, 119482 (2021)

    Article  CAS  Google Scholar 

  117. D. Gao, H. Long, X. Wang et al., Adv. Funct. Mater. 33(6), 2209994 (2023)

    Article  CAS  Google Scholar 

  118. R.M. Irfan, M.H. Tahir, M. Maqsood et al., J. Catal. 390, 196 (2020)

    Article  CAS  Google Scholar 

  119. G. Li, S. Du, Z. Han et al., Appl. Surf. Sci. 593, 153420 (2022)

    Article  CAS  Google Scholar 

  120. W. Huang, W. Xue, X. Hu et al., Appl. Surf. Sci. 599, 153900 (2022)

    Article  CAS  Google Scholar 

  121. C. Cheng, J. Wang, X. Guo et al., Appl. Surf. Sci. 557, 149812 (2021)

    Article  CAS  Google Scholar 

  122. D. Gao, B. Zhao, F. Chen et al., ACS Sustain. Chem. Eng. 9(25), 8653 (2021)

    Article  CAS  Google Scholar 

  123. X. Guo, P. Guo, C. Wang et al., Chem. Eng. J. 383, 123183 (2020)

    Article  CAS  Google Scholar 

  124. J. Jia, W. Sun, Q. Zhang et al., Appl. Catal. B: Environ. 261, 118249 (2020)

    Article  CAS  Google Scholar 

  125. C. Ren, W. Li, S. Gu et al., Appl. Mater. Today 20, 100731 (2020)

    Article  Google Scholar 

  126. H. Gong, Z. Li, Z. Chen et al., ACS Appl. Nano Mater. 3(4), 3665 (2020)

    Article  CAS  Google Scholar 

  127. R.M. Irfan, M.H. Tahir, S.A. Khan et al., J. Colloid Interface Sci. 557, 1 (2019)

    Article  CAS  PubMed  Google Scholar 

  128. M. Karunanidhy, G. Prabhavathi, A.H. Beevi et al., J. Nanosci. Nanotechnol. 18(10), 6680 (2018)

    Article  Google Scholar 

  129. S. Anantharaj, S. Kundu, S. Noda, J. Mater. Chem. A 8(8), 4174 (2020)

    Article  CAS  Google Scholar 

  130. Y. Mu, Q. Li, P. Lv et al., RSC Adv. 4(97), 54713 (2014)

    Article  CAS  Google Scholar 

  131. K.S. Bhat, H.C. Barshilia, H. Nagaraja, Int. J. Hydrogen Energy 42(39), 24645 (2017)

    Article  CAS  Google Scholar 

  132. M. Sadaqat, L. Nisar, F. Hussain et al., J. Mater. Chem. A 7(46), 26410 (2019)

    Article  CAS  Google Scholar 

  133. A. Puthirath Balan, S. Radhakrishnan, R. Neupane, et al., ACS Appl. Nano Mater. 1(11), 6427 (2018)

  134. M. Tayyab, Y.J. Liu, Z.G. Liu et al., Chem. Eng. J. 455, 140601 (2023)

    Article  CAS  Google Scholar 

  135. Q. Zhang, X. Bai, X. Hu et al., Appl. Surf. Sci. 579, 152224 (2022)

    Article  CAS  Google Scholar 

  136. L. Wang, G. Yang, S. Wang et al., Int. J. Hydrogen Energy 44(59), 30974 (2019)

    Article  CAS  Google Scholar 

  137. Q. Wang, X. Wang, Z. Yu et al., Nano Energy 60, 827 (2019)

    Article  CAS  Google Scholar 

  138. T. Su, Z.D. Hood, M. Naguib et al., Nanoscale 11(17), 8138 (2019)

    Article  CAS  PubMed  Google Scholar 

  139. F.-Y. Tian, D. Hou, F. Tang et al., J. Mater. Chem. A 6(35), 17086 (2018)

    Article  CAS  Google Scholar 

  140. M.S. Nasir, G. Yang, I. Ayub et al., Environ. Chem. Lett. 20(1), 19 (2022)

    Article  CAS  Google Scholar 

  141. L. Dong, X. Wang, P. Wang et al., J. Mater. Chem. C 10(16), 6402 (2022)

    Article  CAS  Google Scholar 

  142. A. Al-Haddad, Z. Wang, M. Zhou et al., Small 12(40), 5538 (2016)

    Article  CAS  PubMed  Google Scholar 

  143. Y. Liu, X. Zhang, R. Liu et al., J. Solid State Chem. 184(3), 684 (2011)

    Article  CAS  Google Scholar 

  144. M.-Y. Qi, M. Conte, M. Anpo et al., Chem. Rev. 121(21), 13051 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2022YFB3803600), the National Natural Science Foundation of China (21972040, 22006038), the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-02-E00106), the Science and Technology Commission of Shanghai Municipality (20DZ2250400, 22230780200), and the Program of Introducing Talents of Discipline to Universities (B20031).

Author information

Authors and Affiliations

Authors

Contributions

SM, MT, and LZ wrote the main manuscript text. MK and ZA helped to search the reference. JL, JZ, and MA contributed significantly to analysis and manuscript preparation. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Liang Zhou or Jinlong Zhang.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansoor, S., Tayyab, M., Khan, M. et al. Recent advancements in Se- and Te-enriched cocatalysts for boosting photocatalytic splitting of water to produce hydrogen. Res Chem Intermed 49, 3723–3745 (2023). https://doi.org/10.1007/s11164-023-05077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05077-5

Keywords

Navigation