Skip to main content
Log in

Optimizing interfacial interaction between Cu and metal oxides boosts methanol yield in CO2 hydrogenation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Thermocatalytic conversion of redundant CO2 to useful methanol is an attractive route to address both energy and environmental crises simultaneously. However, existing copper/oxide catalysts widely used in these thermocatalytic processes still suffer from low methanol yield under mild reaction conditions. In this work, we design inverse oxide/Cu catalysts to achieve superior thermal catalytic performance for CO2 hydrogenation. The optimized ZnO/Cu-1.0 catalyst exhibits maximum CH3OH selectivity of 83.4% and space–time yield (STY) of \(170.9\;{\text{g}}_{{{\text{CH}}_{3} {\text{OH}}}} \;{\text{kg}}_{{{\text{cat}}}}^{ - 1} \;{\text{h}}^{ - 1}\) in CO2 hydrogenation at 210 °C, nearly twofold higher STY than the previous optimal inverse ZnO/Cu catalysts (\(89.6\;{\text{g}}_{{{\text{CH}}_{3} {\text{OH}}}} \;{\text{kg}}_{{{\text{cat}}}}^{ - 1} \;{\text{h}}^{ - 1}\)at 250 °C). Importantly, ZnO/Cu-1.0 catalyst displayed not only a satisfactory catalytic stability but also a superior CH3OH STY with a time-on-stream of 24 h. Such inverse configuration of catalysts will pave the way for new strategies to design high-performance thermocatalytic catalysts and promote their commercialization.

Graphical abstract

Typical inverse ZnO/Cu-1.0 catalysts have been demonstrated and achieved to significantly facilitate the activation of inert CO2 molecules to produce methanol, due to its special physicochemical properties and strong ZnO–Cu interaction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Chem. Rev. 120, 7984 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. Q. Li, Int. J. Coal. Sci. Technol. 8, 81197 (2021)

    Google Scholar 

  3. H. Wang, Q. Lei, P. Li, C. Liu, Y. Xue, X. Zhang, C. Li, Z. Yang, Int. J. Coal. Sci. Technol. 8, 383 (2021)

    Article  CAS  Google Scholar 

  4. J.L. Hodalal, J.S. Jun, E.H. Yang, G.H. Hong, Y.S. Noh, D.J. Moon, Res. Chem. Intermediat. 43, 2931 (2017)

    Article  Google Scholar 

  5. Z. Liu, X. Gao, B. Liu, Q. Ma, T.-S. Zhao, J. Zhang, Fuel 321, 124115 (2022)

    Article  CAS  Google Scholar 

  6. Z. Liu, X. Gao, B. Liu, W. Song, Q. Ma, T.-s. Zhao, X. Wang, J.W. Bae, X. Zhang and J. Zhang, Appl. Catal. B. 310 (2022)

  7. C. Ping, B.Q. Feng, Y.L. Teng, H.Q. Chen, S.L. Liu, Y.L. Tai, H.N. Liu, B.X. Dong, RSC. Adv. 10, 21509 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. H. Bahruji, J.R. Esquius, M. Bowker, G. Hutchings, R.D. Armstrong, W. Jones, Top. Catal. 61, 144 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Bansode, B. Tidona, P.R. von Rohr, A. Urakawa, Catal. Sci. Technol. 3, 767 (2013)

    CAS  Google Scholar 

  10. Z. Luo, S. Tian, Z. Wang, Ind. Eng. Chem. Res. 59, 5657 (2020)

    Article  CAS  Google Scholar 

  11. O.A. Ojelade, S.F. Zaman, M.A. Daous, A.A. Al-Zahrani, A.S. Malik, H. Driss, G. Shterk, J. Gascon, Appl. Catal. A-Gen. 584, 117185 (2019)

    Article  CAS  Google Scholar 

  12. C.S. Santana, L.S. Shine, L.H. Vieira, R.J. Passini, E.A. Urquieta-González, E.M. Assaf, J.F. Gomes, J.M. Assaf, Ind. Eng. Chem. Res. 60, 18750 (2021)

    Article  CAS  Google Scholar 

  13. G. Wang, F. Luo, L. Lin, F. Zhao, React. Kinet. Mech. Catal. 132, 155 (2021)

    Article  CAS  Google Scholar 

  14. H. Yang, P. Gao, C. Zhang, L. Zhong, X. Li, S. Wang, H. Wang, W. Wei, Y. Sun, Catal. Commun. 84, 56 (2016)

    Article  CAS  Google Scholar 

  15. L. Tan, P. Zhang, Y. Suzuki, H. Li, L. Guo, Y. Yoneyama, J. Chen, X. Peng, N. Tsubaki, Ind. Eng. Chem. Res. 58, 22905 (2019)

    Article  CAS  Google Scholar 

  16. H. Li, S. Ren, S. Zhang, S. Padinjarekutt, B. Sengupta, X. Liang, S. Li, M. Yu, J. Mater. Cem. A. 9, 2678 (2021)

    Article  CAS  Google Scholar 

  17. M.J. Liu, S.M. Cao, B.Q. Feng, B.X. Dong, Y.X. Ding, Q.H. Zheng, Y.L. Teng, Z.W. Li, W.L. Liu, L.G. Feng, Dalton. Trans. 49, 42 (2020)

    Google Scholar 

  18. G. Bharath, A. Hai, K. Rambabu, P. Kallem, M.A. Haija, F. Banat, J. Theerthagiri, M.Y. Choi, Fuel 311, 122619 (2022)

    Article  CAS  Google Scholar 

  19. L. Tan, F. Wang, P. Zhang, Y. Suzuki, Y. Wu, J. Chen, G. Yang, N. Tsubaki, Chem. Sci. 11, 4097 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. T. Lin, P. Liu, K. Gong, Y. An, F. Yu, X. Wang, L. Zhong, Y. Sun, Appl. Catal. B. 299, 120683 (2021)

    Article  CAS  Google Scholar 

  21. L. Guo, S. Sun, J. Li, W. Gao, H. Zhao, B. Zhang, Y. He, P. Zhang, G. Yang, N. Tsubaki, Fuel 306, 121684 (2021)

    Article  CAS  Google Scholar 

  22. L. Guo, J. Li, Y. Cui, R. Kosol, Y. Zeng, G. Liu, J. Wu, T. Zhao, G. Yang, L. Shao, P. Zhan, J. Chen, N. Tsubaki, Chem. Commun (Camb) 56, 9372 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. X. Wang, G. Yang, J. Zhang, F. Song, Y. Wu, T. Zhang, Q. Zhang, N. Tsubaki, Y. Tan, Catal. Sci. Technol. 9, 5401 (2019)

    Article  CAS  Google Scholar 

  24. M.J. Fernández-Torres, W. Dednam, J.A. Caballero, Energy. Convers. Manag. 252, 115115 (2022)

    Article  Google Scholar 

  25. F.Z. Meng, X.G. Li, M. Meng, Y. Ishizaka, N. Tsubaki, Res Chem Intermediat. 37, 397 (2011)

    Article  CAS  Google Scholar 

  26. S.D. Sanjaya, S.A. Jose, Acc. Chem. Res. 46, 1702 (2013)

    Article  Google Scholar 

  27. H. Zheng, N. Narkhede, L.Y. Han, H.C. Zhang, Z. Li, Res Chem Intermediat. 46, 1749 (2020)

    Article  CAS  Google Scholar 

  28. C. Wu, L. Lin, J. Liu, J. Zhang, F. Zhang, T. Zhou, N. Rui, S. Yao, Y. Deng, F. Yang, W. Xu, J. Luo, Y. Zhao, B. Yan, X.D. Wen, J.A. Rodriguez, D. Ma, Nat. Commun. 11, 5767 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R.M. Palomino, P.J. Ramirez, Z. Liu, R. Hamlyn, I. Waluyo, M. Mahapatra, I. Orozco, A. Hunt, J.P. Simonovis, S.D. Senanayake, J.A. Rodriguez, J. Phys. Chem. B. 122, 794 (2018)

    Article  CAS  PubMed  Google Scholar 

  30. T. Lunkenbein, J. Schumann, M. Behrens, R. Schlogl, M.G. Willinger, Angew. Chem. Int. Ed. Engl. 54, 4544 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M.C. Álvarez Galván, R. Schlögl, M. Behrens, ACS. Catal. 5, 3260 (2015)

    Article  CAS  Google Scholar 

  32. T. Fujitani, I. Nakamura, T. Uchijima, J. Nakamura, Surf. Sci. 97, 39 (1997)

    Google Scholar 

  33. S.-C. Qi, X.-Y. Liu, R.-R. Zhu, D.-M. Xue, X.-Q. Liu, L.-B. Sun, Chem. Eng. J. 430 (2022)

  34. K. Shyam, J. Pedro, G.J.A. Jose, P. Liu, Research 355, 1296 (2017)

    Google Scholar 

  35. S.D. Senanayake, P.J. Ramírez, I. Waluyo, S. Kundu, K. Mudiyanselage, Z. Liu, Z. Liu, S. Axnanda, D.J. Stacchiola, J. Evans, J.A. Rodriguez, J. Phys. Chem. C. 120, 1778 (2016)

    Article  CAS  Google Scholar 

  36. X. Sun, Y. Li, Angew. Chem. Int. Ed. Engl. 43, 597 (2004)

    Article  PubMed  Google Scholar 

  37. T. Qi, W. Li, H. Li, K. Ji, S. Chen, Y. Zhang, Mol. Catal. 509, 111641 (2021)

    Article  CAS  Google Scholar 

  38. G. Wang, D. Mao, X. Guo, J. Yu, Int. J. Hydrog. Energy. 44, 4197 (2019)

    Article  CAS  Google Scholar 

  39. G. Bonura, F. Arena, G. Mezzatesta, C. Cannilla, L. Spadaro, F. Frusteri, Catal. Today. 171, 251 (2011)

    Article  CAS  Google Scholar 

  40. F. Zhao, M. Gong, K. Cao, Y. Zhang, J. Li and R. Chen ChemCatChem. 9, 3772 (2017)

    Article  CAS  Google Scholar 

  41. X. Hu, W. Qin, Q. Guan, W. Li, ChemCatChem 10, 4438 (2018)

    Article  CAS  Google Scholar 

  42. S. Natesakhawat, J.W. Lekse, J.P. Baltrus, P.R. Ohodnicki, B.H. Howard, X. Deng, C. Matranga, ACS. Catal. 2, 1667 (2012)

    Article  CAS  Google Scholar 

  43. C. Li, X. Yuan, K. Fujimoto, Appl. Catal. A- Gen. 469, 442 (2014)

    Article  Google Scholar 

  44. R. Singh, K. Tripathi, K.K. Pant, Fuel 303, 121289 (2021)

    Article  CAS  Google Scholar 

  45. P. Gao, F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Appl. Catal. A-Gen. 68, 442 (2013)

    Article  Google Scholar 

  46. S. Kattel, P. Liu, J.G. Chen, J. Am. Chem. Soc. 139, 9739 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. A.B. Vidal, P. Liu, Phys. Chem. Chem. Phys. 14, 16626 (2012)

    Article  CAS  PubMed  Google Scholar 

  48. Z. Shi, Q. Tan, D. Wu, AIChE J. 1047, 1047 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors gracefully acknowledge the National Natural Science Foundation of China (22002135, 22102001), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB480004), and Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (No. 2022-K49).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to writing-original, investigation, conceptualization, data curation, formal analysis. YX contributed to conceptualization, data curation, supervision. YX contributed to investigation, experimental assistance. HL contributed to supervision, conceptualization, methodology. JY contributed to methodology, writing-review & editing, data curation. HZ contributed to writing-review & editing, data curation. XG contributed to data curation. JY contributed to validation. LG contributed to resources, validation. JL contributed to methodology, writing-review & editing, data curation, funding acquisition, resources, supervision.

Corresponding authors

Correspondence to Haitao Li, Lisheng Guo or Jie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1716 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xia, Y., Xu, Y. et al. Optimizing interfacial interaction between Cu and metal oxides boosts methanol yield in CO2 hydrogenation. Res Chem Intermed 49, 3933–3950 (2023). https://doi.org/10.1007/s11164-023-05063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05063-x

Keywords

Navigation