Skip to main content
Log in

Green production of biologically active Ag and Ag–Cu nanoparticles from Prosopis cineraria pod waste extract and their application in epoxidation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The main focus of the current research is bio-nano-technologically produced nanoparticles (NPs) utilizing waste materials. There is a need for developing advanced technology to reduce waste in an eco-friendly way. Therefore, presently the discarded aqueous portion of Prosopis cineraria pod was used after boiling, to synthesize Ag and Ag–Cu NPs. FT-IR spectra illustrated the presence of phenyl propenoids and flavonoids displaying capping as well as reducing properties. TEM and SEM imaging exhibited an average size of Ag NPs (14 nm) and Ag–Cu NPs (27 nm). The crystallinity nature was confirmed by XRD, and the Cu in Ag–Cu NPs was validated through energy-dispersive X-ray analysis. According to the antimicrobial data, Saccharomyces cerevisiae displayed a zone of inhibition (ZOI) of 42.85% (Ag NPs) and 33.98% (Ag–Cu NPs) at lower concentrations (0.0321 mg/ml), while Bacillus subtilis was found most susceptible (85% ZOI) to Ag NPs at 0.5 mg/ml concentration. Further, these NPs (Ag and Ag–Cu) were utilized in the epoxidation of alkene moieties. Ag NPs showed lower conversion (65%), while Ag–Cu NPs were very active for epoxidation of linalool (93% conversion), suggesting the presence of Cu-facilitated epoxidation. To the best of our knowledge for the first time, aqueous waste is applied to prepare green NPs that can be used as antimicrobial agents and in the synthesis of platform chemicals (epoxide) for industrial aspects. These inexpensive ways of producing green NPs have been utilized several times and have found potential applications in nano-medicine, therapeutics, and modification of monoterpenoids to fine fragrance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6A

Similar content being viewed by others

Availability of data and material

The quality and reproducibility of the catalytic experiments for epoxidation of monoterpenoids were verified by triplicate analysis of the experiments, and the results reported in this article correspond to the average of these measurements. The synthesis of NPs procedure and their associated antimicrobial activities reported are truthful, and no details are omitted that allowed the obtaining of these materials as they are reported in this manuscript. The spectroscopic measurements taken are kept in their original files.

References

  1. U. Jinu, M. Gomathi, I. Saiqa, N. Geetha, G. Benelli, P. Venkatachalam, Microb. Pathog. 1(105), 86 (2017)

    Article  Google Scholar 

  2. G. Benelli, Parasitol. Res. 115, 23 (2016)

    Article  Google Scholar 

  3. D.K. Vizhi, N. Supraja, A. Devipriya, N.V.K.V.P. Tollamadugu, R. Babujanarthanam, Adv. Nano. Res. 4(2), 129 (2016)

    Article  Google Scholar 

  4. H.S.A. Afifi, I.A. Al-rub, Prosopis cineraria as an unconventional legumes, nutrition and health benefits. In J. C. Jimenez-Lopez and A. Clemente (Eds.), Legume seed nutraceutical research (Intech Open, 2018).

  5. S. Chaturvedi, P. Kumar, D. Kumar, N. Syed, M. Gupta, C.S. Chanotiya, P.K. Rout, S.K. Khare, Waste. Biomass. Valoriz. 13, 3113 (2022)

    Article  CAS  Google Scholar 

  6. P. Peddi, P.R. Ptsrk, N.U. Rani, S.L. Tulasi, Genetic. Eng. Biotechnol. 19(1), 1–11 (2021)

    Article  Google Scholar 

  7. M. Gopinath, R. Subbaiya, M.M. Selvam, D. Suresh, Int. J. Curr. Microbiol. App. Sci. 3(9), 814 (2014)

    Google Scholar 

  8. P. Cerchier, M. Dabala, K. Brunelli, Green. Process. Synth. 6, 311 (2017)

    CAS  Google Scholar 

  9. P. Yugandhar, T. Vasavi, Y.J. Rao, P.U.M. Devi, G. Narasimha, N. Savithramma, J. Cluster. Sci. 29(4), 743 (2018)

    Article  CAS  Google Scholar 

  10. X. Li, G. Tang, X. Guo, T. Men, Appl. Nanosci. 11, 139 (2021)

    Article  CAS  Google Scholar 

  11. S. Hemmati, L. Mehrazin, M. Hekmati, M. Izadi, H. Veisi, Mater. Chem. Phys. 214, 527 (2018)

    Article  CAS  Google Scholar 

  12. S. Thakur, S. Sharma, S. Thakur, R. Rai, Int. J. Curr. Microbiol. Appl. Sci. 7(4), 683 (2018)

    Article  Google Scholar 

  13. A.S. Adewale, F.A. Similoluwa, Stem. Cell. 10(4), 30 (2019)

    Google Scholar 

  14. S. Yadav, J.M. Khurana, J. Catal. 36, 1042 (2015)

    CAS  Google Scholar 

  15. Z. Rashid, T. Moadi, R. Ghahremanzadeh, New J. Chem. 40, 3343 (2016)

    Article  CAS  Google Scholar 

  16. T.M.S. Rosbero, D.H. Camacho, J. Environ. Chem. Eng. 5, 2524 (2017)

    Article  CAS  Google Scholar 

  17. N.A.N. Mohammad, N.A. Arhan, J. Junaidah, A. Hadi, S.A. Idris, IOP Conf. Series: Mater. Sci. Eng. 358, 012063 (2018)

    Article  Google Scholar 

  18. H.J. Lee, J.Y. Song, B.S. Kim, J. Chem. Technol. Biotechnol. 88, 1971 (2013)

    CAS  Google Scholar 

  19. E.E. Emeka, O.C. Ojiefoh, C. Aleruchi, L.A. Hassan, O.M. Christiana, M. Rebecca, E.O. Dare, A.E. Temitope, Micron 57, 1 (2014)

    Article  CAS  Google Scholar 

  20. Y. Periyasamy, B. Baskaran, V. Senniappan, S. Chidambaram, Mater. Res. Express 5, 105402 (2018)

    Article  Google Scholar 

  21. A.S. Anbu, P. Velmurugan, J.H. Lee, B.-T. Oh, P. Venkatachalam, Inter. J. Biol. Macromol. 88, 18 (2016)

    Article  CAS  Google Scholar 

  22. P. Venkatachalam, P. Sangeetha, N. Geetha, S.V. Sahi, J Nanomater 11(10), 2563 (2015)

    Google Scholar 

  23. C.M. Phan, H.M. Nguyen, J. Phys. Chem. A 121, 3213 (2017)

    Article  CAS  Google Scholar 

  24. S. Serra, D. De Simeis, Catal. 8, 362 (2018)

    Google Scholar 

  25. N.J. Castellanos, H. Martinew Q, F. Martinew O, K. Leus, P. Van Der Voort, Res Chem Intermed 42, 4227 (2021)

    Article  Google Scholar 

  26. A.W. Baur, W.M. Kirby, J.C. Sherris, M. Truck, Am. J. Clin. Path. 45, 493 (1966)

    Article  Google Scholar 

  27. V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Acta. Naturae. 6, 35 (2014)

    Article  CAS  Google Scholar 

  28. G. Manjari, S. Saran, S. Radhakrishnan, P. Rameshkumar, A. Pandikumar, S.P. Devipriya, J. Environ. Manag. 15, 262 (2020)

    Google Scholar 

  29. S.A. Akintelu, F.A. Similoluwa, Stem. Cells. 10, 30 (2019)

    Google Scholar 

  30. X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, Z. Tang, J. Alloys. Compd. 724, 365 (2017)

    Article  CAS  Google Scholar 

  31. Y. Tian, Z. Jiang, C. Wang, S. Ding, J. Wen, Z. Liu, C. Wang, New. J. Chem. 41, 2800 (2017)

    Article  Google Scholar 

  32. C. Guo, H. Liu, J. Wang, J. Chen, J. Colloid. Interface. Sci. 209, 368 (1999)

    Article  CAS  Google Scholar 

  33. C. Baudot, C.M. Tan, J.C. Kong, Infrared. Phys. Technol. 53, 434 (2010)

    Article  CAS  Google Scholar 

  34. S. Rajeshkumar, S. Menon, S. Venkat Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, S. Satija, G. Gupta, D.K. Chellappan, L. Thagavelu, K. Dua, J. Photochem. Photobiol. 197, 111531 (2019)

    Article  CAS  Google Scholar 

  35. M.R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H.Z. Alkhathalan, M.R.H. Siddiqui, J.P. Shaik, A. Ahamed, A. Mahmood, M. Khan, S.F. Adil, Sustain. 10, 913 (2018)

    Article  Google Scholar 

  36. A. Folorunso, S. Akintelu, A.K. Oyebamiji, S. Ajayi, B. Abiola, I. Abdusalam, A. Morakinyo, J. Nanostructure. Chem. 9, 111 (2019)

    Article  CAS  Google Scholar 

  37. H. Fouad, H. Li, Y. Ding, E.-S. Ahmed, A. Ghulam, J. Mo, Artif. Cells. Nanomed. Biotechnol. 45, 1369 (2017)

    Article  CAS  Google Scholar 

  38. Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mater. Res. 52, 662 (2008)

    Article  Google Scholar 

  39. C.B. Vilanculo, L.C. de Andrade Leles, M.J. da Silva, Waste. Biomass. Valoriz. 11, 1895 (2020)

    Article  CAS  Google Scholar 

  40. F. Parrino, A. Fidalgo, L. Palmisano, L.M. Ilharco, M. Pagliaro, R. Ciriminna, ACS Omega 3, 4884 (2018)

    Article  CAS  Google Scholar 

  41. M. Kfoury, L. Auezova, H. Greige-Gerges, S. Fourmentin, Environ. Chem. Lett. 17, 129 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Director, CSIR-CIMAP, Lucknow, for providing the necessary laboratory facilities under the CSIR-Aroma mission (HCP0007, PE-II). The authors are thankful to SERB, DST for financial grant (CRG/2021/002525) for carrying out this work. Dr. S Chaturvedi is thankful to DST for WOS-A fellowship (DST/WOS-A/CS-94/2021).

Funding

The work was financially supported by the Science and Engineering Research Board, DST, India, with grant number CRG/2021/002525. Dr. S Chaturvedi is provided financial support from DST, India, in the form of WOS-A Fellowship with award number DST/WOS-A/CS-94/2021.

Author information

Authors and Affiliations

Authors

Contributions

Prashant Kumar contributed to experimental plan, data curation, and writing—original draft. Praveen Kumar Sharma contributed to experimental plan, data curation, and writing—original draft. Suman Singh contributed to writing of the bio-activity part. Shivani Chaturvedi contributed to conceptualization, supervision, and writing. Shreya Tripathi contributed to FT-IR analysis and data interpretation. Huma Fatima contributed to TEM analysis. Minakshi Grover contributed to microbial analysis, and supervision. Priyabrat Mohapatra contributed to methodology, validation of data, and visualization. Chandan Singh Chanotiya contributed to the experimental plan, GC-FID and GC/MS analysis, and data curation. Prasant Kumar Rout contributed to methodology, validation, investigation, funding acquisition, and writing—review and editing.

Corresponding author

Correspondence to Prasant Kumar Rout.

Ethics declarations

Conflict of interest

There are no financial and non-financial competing interests directly or indirectly related to this work submitted for publication.

Ethical Approval

The manuscript was approved by the institute internal publication committee with communication no CIMAP/PUB/2022/102 for publication.

Human or animal rights

The manuscript is not contained any results on live vertebrates and/or higher invertebrates including human subject. Hence, the consent is given for its publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Sharma, P.K., Chaturvedi, S. et al. Green production of biologically active Ag and Ag–Cu nanoparticles from Prosopis cineraria pod waste extract and their application in epoxidation. Res Chem Intermed 49, 557–575 (2023). https://doi.org/10.1007/s11164-022-04887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04887-3

Keywords

Navigation