Skip to main content
Log in

Zeolite ZSM-11 as a reusable and efficient catalyst promoted improved protocol for synthesis of 2,4,5-triarylimidazole derivatives under solvent-free condition

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Zeolite ZSM-11 catalyst was prepared by hydrothermal method and characterized by FTIR, XRD, SEM, HRTEM, EDS, and BET analysis techniques. The catalyst shows good catalytic activity toward synthesis of 2,4,5-triarylimidazole derivatives which is prepared by using benzil, aldehyde and ammonium acetate in solvent-free condition. The reaction, one pot synthesis is highly adaptable and eco-friendly and has several merits such as short reaction time, mild reaction conditions, and high yield. The ease of reusability and recovery of catalyst for five consecutive reactions makes this protocol highly suitable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

References

  1. S. Dehghan Khalili, S.H. Banitaba, J. Safari, Sci. Iran. 20, 1855 (2013)

    Google Scholar 

  2. M. Esmaeilpour, J. Javidi, M. Zandi, New J. Chem. 39, 3388 (2015)

    CAS  Google Scholar 

  3. H. Naeimi, D. Aghaseyedkarimi, New J. Chem. 39, 9415 (2015)

    CAS  Google Scholar 

  4. J. Jayram, V. Jeena, Green Chem. 19, 5841 (2017)

    CAS  Google Scholar 

  5. A. Shaabani, R. Afshari, S.E. Hooshmand, New J. Chem. 41, 8469 (2017)

    CAS  Google Scholar 

  6. Y. Chen, R. Wang, F. Ba, J. Hou, A. Ding, M. Zhou, H. Guo, J. Saudi Chem. Soc. 21, 76 (2017)

    CAS  Google Scholar 

  7. A. Shaabani, A. Maleki, M. Behnam, Synth. Commun. 39, 102 (2009)

    CAS  Google Scholar 

  8. J. Jayram, V. Jeena, RSC Adv. 8, 37557 (2018)

    CAS  Google Scholar 

  9. S.A. Siddiqui, U.C. Narkhede, S.S. Palimkar, T. Daniel, R.J. Lahoti, K.V. Srinivasan, Tetrahedron 61, 3539 (2005)

    CAS  Google Scholar 

  10. J. Wang, R. Mason, D. VanDerveer, K. Feng, X.R. Bu, J. Org. Chem. 68, 5415 (2003)

    CAS  PubMed  Google Scholar 

  11. S. Sarshar, D. Siev, A.M.M. Mjalli, Tetrahedron Lett. 37, 835 (1996)

    CAS  Google Scholar 

  12. X.C. Wang, H.P. Gong, Z.J. Quan, L. Li, H.L. Ye, Chinese Chem. Lett. 20, 44 (2009)

    Google Scholar 

  13. S.N. Murthy, B. Madhav, Y.V.D. Nageswar, Tetrahedron Lett. 51, 5252 (2010)

    CAS  Google Scholar 

  14. A. Shaabani, A. Rahmati, J. Mol. Catal. A Chem. 249, 246 (2006)

    CAS  Google Scholar 

  15. M.G. Shen, C. Cai, W. Bin Yi, J. Fluor. Chem. 129, 541 (2008)

    CAS  Google Scholar 

  16. L.M. Wang, Y.H. Wang, H. Tian, Y.F. Yao, J.H. Shao, B. Liu, J. Fluor. Chem. 127, 1570 (2006)

    CAS  Google Scholar 

  17. H. Weinmann, M. Harre, K. Koenig, E. Merten, U. Tilstam, Tetrahedron Lett. 43, 593 (2002)

    CAS  Google Scholar 

  18. N.D. Kokare, J.N. Sangshetti, D.B. Shinde, Synthesis (Stuttg). (2007). https://doi.org/10.1055/s-2007-983872

    Article  Google Scholar 

  19. M.M. Khodaei, K. Bahrami, I. Kavianinia, J. Chinese Chem. Soc. 54, 829 (2007)

    CAS  Google Scholar 

  20. T.L.M. Maesen, M. Schenk, T.J.H. Vlugt, B. Smit, J. Catal. 203, 281 (2001)

    CAS  Google Scholar 

  21. Y. Gu, N. Cui, Q. Yu, C. Li, Q. Cui, Appl. Catal. A Gen. 429–430, 9 (2012)

    Google Scholar 

  22. Q. Yu, C. Cui, Q. Zhang, J. Chen, Y. Li, J. Sun, C. Li, Q. Cui, C. Yang, H. Shan, J. Energy Chem. 22, 761 (2013)

    CAS  Google Scholar 

  23. L. Zhang, H. Liu, X. Li, S. Xie, Y. Wang, W. Xin, S. Liu, L. Xu, Fuel Process. Technol. 91, 449 (2010)

    CAS  Google Scholar 

  24. P.M. Piccione, M.E. Davis, Microporous Mesoporous Mater. 49, 163 (2001)

    CAS  Google Scholar 

  25. G.T. Kokotailo, P. Chu, S.L. Lawton, W.M. Meier, Comptes Rendus Chimie 275, 119 (1978)

    CAS  Google Scholar 

  26. X. Wang, F. Meng, H. Chen, F. Gao, Y. Wang, X. Han, C. Fan, C. Sun, S. Wang, L. Wang, Comptes Rendus Chim. 20, 1083 (2017)

    CAS  Google Scholar 

  27. K.P. Dey, S. Ghosh, M.K. Naskar, Ceram. Int. 39, 2153 (2013)

    CAS  Google Scholar 

  28. G. Coudurier, C. Naccache, J.C. Vedrine, J. Chem. Soc. Chem. Commun. (1982). https://doi.org/10.1039/c39820001413

    Article  Google Scholar 

  29. W. Song, Z. Liu, L. Liu, A.L. Skov, N. Song, G. Xiong, K. Zhu, X. Zhou, RSC Adv. 5, 31195 (2015)

    CAS  Google Scholar 

  30. M.M.J. Treacy, J.B. Higgins (eds.), Collection of Simulated XRD Powder Patterns for Zeolites, 5th edn. (Amsterdam, Elsevier, 2007), p. 477. https://doi.org/10.1016/B978-0-444-53067-7.X5470-7

  31. K. Shen, N. Wang, X. Chen, Z. Chen, Y. Li, J. Chen, W. Qian, F. Wei, Catal. Sci. Technol. 7, 5143 (2017)

    CAS  Google Scholar 

  32. J. Yang, S. Yu, H. Hu, Y. Zhang, J. Lu, J. Wang, D. Yin, Chem. Eng. J. 166, 1083 (2011)

    CAS  Google Scholar 

  33. S. S. Lapari, Z. Ramli, S. Triwahyono, 2015 (2015).

  34. H. Chen, X. Zhang, J. Zhang, Q. Wang, RSC Adv. 7, 46109 (2017)

    CAS  Google Scholar 

  35. M. Kidwai, P. Mothsra, V. Bansal, R. Goyal, Monatshefte fur Chemie 137, 1189 (2006)

    CAS  Google Scholar 

  36. S. Balalaie, A. Arabanian, M.S. Hashtroudi, Monatshefte fur Chemie 131, 945 (2000)

    CAS  Google Scholar 

  37. H.D. Hanoon, S.M. Radhi, S.K. Abbas, A.I.P. Conf, Proc. 2144, 1 (2019)

    Google Scholar 

  38. V.S.V. Satyanarayana, A. Sivakumar, Chem. Pap. 65, 519 (2011)

    CAS  Google Scholar 

  39. A.A. Marzouk, V.M. Abbasov, A.H. Talybov, S.K. Mohamed, World. J. Org. Chem. 1, 6 (2013)

    Google Scholar 

  40. J. Safari, Z. Zarnegar, Ultrason. Sonochem. 20, 740 (2013)

    CAS  PubMed  Google Scholar 

  41. G.V.M. Sharma, Y. Jyothi, P.S. Lakshmi, Synth. Commun. 36, 2991 (2006)

    CAS  Google Scholar 

  42. A. Teimouri, A.N. Chermahini, J. Mol. Catal. A Chem. 346, 39 (2011)

    CAS  Google Scholar 

  43. H.D. Hanoon, E. Kowsari, M. Abdouss, M.H. Ghasemi, H. Zandi, Res. Chem. Intermed. 43, 4023 (2017)

    CAS  Google Scholar 

  44. L. Wang, C. Cai, Monatshefte fur Chemie 140, 541 (2009)

    CAS  Google Scholar 

  45. B.F. Mirjalili, A. Bamoniri, M.A. Mirhoseini, Sci. Iran. 20, 587 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Sudarshan S. Dipake, gratefully thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of fellowship and to the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.), India. for support and providing the necessary laboratory facility.

Author information

Authors and Affiliations

Authors

Contributions

SSD-Conduct the whole experiment, Writing original draft. MKL-Review and editing. ASR-Review and editing. STG-Principal author.

Corresponding author

Correspondence to Suresh T. Gaikwad.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Consent to participate

All Authors are agreed for submission.

Consent for publication

Agreed to submission.

Data availability

Manuscript including all data correct and unpublished.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2771 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipake, S.S., Lande, M.K., Rajbhoj, A.S. et al. Zeolite ZSM-11 as a reusable and efficient catalyst promoted improved protocol for synthesis of 2,4,5-triarylimidazole derivatives under solvent-free condition. Res Chem Intermed 47, 2245–2261 (2021). https://doi.org/10.1007/s11164-021-04423-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04423-9

Keywords

Navigation