Skip to main content
Log in

Adsorption behavior of water and xylene isomers on AlPO-5 zeolite modified by different transition metals

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This work deals with the preparation of MAPO-5 zeolite by a hydrothermal method. In order to study the adsorption properties of this zeolite several transition metals (Fe, Co, Ni, Mn and Zn) were incorporated by a direct route. The obtained zeolites were characterized by various physico-chemical techniques such as X-ray diffraction, Fourier transform infrared spectroscopy, adsorption/desorption of argon, thermogravimetric analysis/differential thermal analysis, scanning electronic microscopy (FEG-ESEM) and Inductively coupled plasma–optical Emission spectrometry (ICP-OES). The prepared zeolites were tested for adsorption of water and xylene isomers (ortho-, para- and meta-xylene). The obtained results showed that the isomorphic substitution of the transition metals in the framework of the zeolite has been achieved with different levels of metals. The isomorphic substitution by zinc showed the best results in terms of the percentage of the incorporated metal, while the substitution by cobalt presented the lowest rate of incorporation in the framework of the zeolite CoAPO-5. The adsorption of water in the vapor state on the zeolite substituted by Ni, Fe and Zn has presented the best adsorption capacity. The adsorption of xylene isomers on MAPO-5 showed different isotherms, confirming that the adsorption behavior differs from one zeolite to another. ZnAPO-5 showed higher adsorption capacity for all xylene isomers with slight selectivity towards meta-xylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Polisi, R. Arletti, S. Quartieri, L. Pastero, C. Giacobbe, G. Vezzalini, Microporous Mesoporous Mater. 261, 137 (2018)

    Article  CAS  Google Scholar 

  2. T. Gibbs, C.L.I.M. White, A.R. Ruiz-Salvador, D.W. Lewis, Stud. Surf. Sci. Catal. 154, 1737 (2004)

    Article  Google Scholar 

  3. N. Djeffal, M. Benbouzid, B. Boukoussa, H. Sekkiou, A. Bengueddach, Mater. Res. Express. 4, 035504 (2017)

    Article  CAS  Google Scholar 

  4. I. Terrab, B. Boukoussa, R. Hamacha, N. Bouchiba, R. Roy, A. Bengueddach, A. Azzouz, Thermochim. Acta 624, 95 (2016)

    Article  CAS  Google Scholar 

  5. C. Wan, S. Ding, C. Zhang, X. Tan, W. Zou, X. Liu, X. Yang, Sep. Purif. Technol. 180, 1 (2017)

    Article  CAS  Google Scholar 

  6. J. Grand, S.N. Talapaneni, A. Vicente, C. Fernandez, E. Dib, H.A. Aleksandrov, G.N. Vayssilov, R. Retoux, P. Boullay, J.P. Gilson, V. Valtchev, S. Mintova, Nat. Mater. 16, 1010 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. S.N. Talapaneni, J. Grand, S. Thomas, H.A. Ahmad, S. Mintova, Mater. Des. 99, 574 (2016)

    Article  CAS  Google Scholar 

  8. A. Hakiki, B. Boukoussa, Z. Kibou, I. Terrab, K. Ghomari, N. Choukchou-Braham, R. Hamacha, A. Bengueddach, A. Azzouz, Thermochim. Acta 662, 108 (2018)

    Article  CAS  Google Scholar 

  9. A. Kessouri, B. Boukoussa, A. Bengueddach, R. Hamacha, Res. Chem. Intermed. 44, 2475 (2018)

    Article  CAS  Google Scholar 

  10. S. Bellatreche, A. Hasnaoui, B. Boukoussa, J. Garcia-Aguilar, A. Berenguer-Murcia, D. Cazorla-Amoros, A. Bengueddach, Res. Chem. Intermed. 42, 8039 (2016)

    Article  CAS  Google Scholar 

  11. S.-T. Wilson, B.-M. Lok, C.-A. Messina, T.-R. Cannan, E.-M. Flanigen, J. Am. Chem. Soc. 104, 1146 (1982)

    Article  CAS  Google Scholar 

  12. J. Kornatowski, G. Zadrozna, J. Wloch, M. Rozwadowski, Langmuir 15, 5863 (1999)

    Article  CAS  Google Scholar 

  13. C. Baerlocher, W.-M. Meier, D.-H. Olson, Atlas of Zeolite framework types. Elsevier, Amsterdam (2001)

    Google Scholar 

  14. S.-B. Waghmode, Y. Saha, Y. Kubota, Catal J. 228, 192 (2004)

    Article  CAS  Google Scholar 

  15. M. Hartmann, L. Kevan, Chem. Rev. 99, 635 (1999)

    Article  CAS  PubMed  Google Scholar 

  16. B.M. Weckhuysen, R.R. Ramachandra, J.A. Martens, R.A. Schoonheydt, Eur. J. Inorg. Chem. 1999, 565 (1999)

    Article  Google Scholar 

  17. E.-M. Flanigen, B.-M. Lok, R.-L. Patton, S.-T. Wilson, Stud. Surf. Sci. Catal. 28, 103 (1986)

    Article  CAS  Google Scholar 

  18. M. Shafiei, M.-S. Alivand, A. Ali, A. Rashidi, D. Samimi, D. Mohebbi-Kalhori, Chem. Eng. J. 341, 164 (2018)

    Article  CAS  Google Scholar 

  19. X. Zhang, B. Gao, A. Elise Creamer, C. Cao, Y. Li, J. Hazard. Mater. 338, 102 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. K. Machowski, P. Kuśtrowski, B. Dudek, M. Michalik, Mater. Chem. Phys. 165, 253 (2015)

    Article  CAS  Google Scholar 

  21. M. Kraus, U. Trommler, F. Holzer, F.-D. Kopinke, U. Roland, Chem. Eng. J. 351, 356 (2018)

    Article  CAS  Google Scholar 

  22. M.G. Uytterhoeven, R.A. Schoonheydt, Microporous Mater. 3, 265 (1994)

    Article  CAS  Google Scholar 

  23. B. Feng, J. Li, X. Zhu, Q. Guo, W. Zhang, G. Wen, Z. Zhang, L. Gu, Z. Yang, Q. Zhang, B. Shen, Catal. Today 263, 91 (2016)

    Article  CAS  Google Scholar 

  24. A.X.S. Bruker, TOPAS V6: Genereal Profile and Structure Analysis Software for Powder Diffraction Data—User’s Manual (Bruker AXS, Karlsruhe, 2017)

    Google Scholar 

  25. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer, Berlin, p. 347 (2006)

    Google Scholar 

  26. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938)

    Article  CAS  Google Scholar 

  27. L. Zhou, J. Xu, C. Chen, F. Wang, X. Li, J. Porous Mater. 15, 7 (2008)

    Article  CAS  Google Scholar 

  28. C. Coutanceau, J.-M. Da Silva, M.-F. Alvarez, F.-R. Ribeiro, M. Guisnet, J. Chim. Phys. 94, 765 (1997)

    Article  CAS  Google Scholar 

  29. B.-W. Lu, H. Jon, T. Kanai, Y. Oumi, K. Itabashi, T. Sano, J. Mater. Sci. 41, 1861 (2001)

    Article  CAS  Google Scholar 

  30. A. Corma, L.-T. Nemeth, M. Renz, S. Valencia, Nature 412, 423 (2001)

    Article  CAS  PubMed  Google Scholar 

  31. D. Yiyuan Khoo, H. Awala, S. Mintova, E.-P. Ng, Microporous Mesoporous Mater. 194, 200 (2014)

    Article  CAS  Google Scholar 

  32. E.-P. Ng, S. Mintova, Microporous Mesoporous Mater. 114, 1 (2008)

    Article  CAS  Google Scholar 

  33. J. Kornatowski, C. R. Chimie. 8, 561 (2005)

    Article  CAS  Google Scholar 

  34. M. Amiri, S. Sohrabnezhad, A. Rahimi, Mater. Sci. Eng. C 37, 342 (2014)

    Article  CAS  Google Scholar 

  35. G. Müller, J. Bódis, J. Kornatowski, Microporous Mesoporous Mater. 69, 1 (2004)

    Article  CAS  Google Scholar 

  36. D.-D. Rosenfeld, D.-M.D. Barthomeuf, US Exxon Chem Pat. 4, 482 (1983)

    Google Scholar 

  37. A.S.T. Chiang, C.K. Lee, Z.H. Chang, Zeolites 11, 380 (1991)

    Article  CAS  Google Scholar 

  38. J. Liu, M. Dong, Z. Sun, Z. Qin, J. Wang, Colloids Surf. A Physicochem. Eng. Aspects. 247, 41 (2004)

    Article  CAS  Google Scholar 

  39. G. Lischke, B. Parlitz, U. Lohse, E. Schreier, R. Fricke, Appl. Catal. A 166, 351 (1998)

    Article  CAS  Google Scholar 

  40. S. Gopalakrishnan, K.R. Viswanathan, S. Vishnu Priya, J. Herbert Mabel, M. Palanichamy, V. Murugesan, Catal. Commun. 10, 23 (2008)

    Article  CAS  Google Scholar 

  41. V.R. Vijayaraghavan, K. Joseph Antony Raj, J. Mol, J. Mol. Catal. A Chem. 207, 41 (2004)

    Article  CAS  Google Scholar 

  42. R. Wendelbo, R. Roque-Malherbe, Microporous Mater. 10, 23 (1997)

    Article  Google Scholar 

  43. Z. Wu, Y. Yang, B. Tu, P.A. Webley, D. Zhao, Adsorption 15, 123 (2009)

    Article  CAS  Google Scholar 

  44. A.M. Dehkordi, M. Khademi, Microporous Mesoporous Mater. 172, 136 (2013)

    Article  CAS  Google Scholar 

  45. S. Tourani, M. Baghalha, F. Khorasheh, A. Behvandi, Fluid Phase Equilib. 298, 54 (2010)

    Article  CAS  Google Scholar 

  46. Z.Y. Gu, D.Q. Jiang, H.F. Wang, X.Y. Cui, X.P. Yan, J. Phys. Chem. C 114, 311 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Moulai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moulai, S., Ghezini, R., Hasnaoui, A. et al. Adsorption behavior of water and xylene isomers on AlPO-5 zeolite modified by different transition metals. Res Chem Intermed 45, 1653–1668 (2019). https://doi.org/10.1007/s11164-018-3692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-018-3692-6

Keywords

Navigation