Skip to main content

Advertisement

Log in

High CO2 adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristics with microwave

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Synthesized zeolite Socony Mobil-5 (ZSM-5) with large pore surface structures and modified with ethylenediamine were used to achieve high CO2 adsorption capacity from the gas stream. The effect of alkali earth metals, granite, bentonite and starch on the porosity and crystallinity of zeolite has been studied. The prepared synthesized samples were characterized by SEM, EDX, XRD, N2 adsorption/desorption, FT-IR and TGA. The maximum amine adsorption in synthesized zeolite obtained was 450 mg/g of zeolite. During the adsorption experiment, no drawback caused by filling the surface pores of zeolite was observed which indicates larger internal channels and well-distributed pores on the surface of synthesized zeolite. The highest CO2 adsorption capacity obtained was 6.13 mmol/g of synthesized ZSM-5. Microwave energy was used to remove the adsorbed CO2 for the effective reuse of the adsorbents. Desorption efficiency reached 100 % for the samples containing 70 and 50 % ethylenediamine after 9 and 13 min of microwave irritation, while the maximum desorption rate obtained was 60 % for the sample containing 10 % of ethylenediamine. The prepared synthesized sample in this study showed high amine adsorption results in higher CO2 adsorption and complete desorption using microwave energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lee SC, Kwon YM, Park YH, Lee WS, Park JJ, Ryu CK, Yi CK, Kim JC (2010) Structure effects of potassium-based TiO2 sorbents on the CO2 capture capacity. Top Catal 53(7–10):641–647. doi:10.1007/s11244-010-9499-3

    Article  Google Scholar 

  2. Emissions of Greenhouse Gases in the United States (2003) Energy information administration, Washington, DC. ftp://Eia.doe.gov/pub/oiaf/1605/cdrom/pdf/ggropt/057303.pdf

  3. Intergovernmental Panel on Climate Change (IPCC) (2005) IPCC special report on carbon dioxide capture and storage. http://www.ipcc.ch

  4. Yue MB, Sun LB, Cao Y, Wang ZJ, Wang Y, Yu Q, Zhu JH (2008) Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous Mesoporous Mater 114(1–3):74–81. doi:10.1016/j.micromeso.2007.12.016

    Article  Google Scholar 

  5. Folger P (2014) Carbon capture and sequestration research: research, development, and demonstration at the U.S. Department of Energy. http://www.crs.gov. Accessed 10 Feb 2014

  6. Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS (2007) Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21(6):3555–3559. doi:10.1021/ef070038y

    Article  Google Scholar 

  7. Xu XL, Zhao XX, Sun LB, Liu XQ (2009) Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified beta-zeolite. J Nat Gas Chem 18(2):167–172. doi:10.1016/S1003-9953(08)60098-5

    Article  Google Scholar 

  8. Lee SC, Hsieh CC, Chen CH, Chen YS (2013) CO2 adsorption by Y-type zeolite impregnated with amines in indoor air. Aerosol Air Qual Res 13(1):360–366. doi:10.4209/aaqr.2012.05.0134

    Google Scholar 

  9. Song FJ, Zhao YX, Zhong Q (2013) Adsorption of carbon dioxide on amine-modified TiO2 nanotubes. J Environ Sci China 25(3):554–560. doi:10.1016/S1001-0742(12)60097-7

    Article  Google Scholar 

  10. Mello MR, Phanon D, Silveira GQ, Llewellyn PL, Ronconi CM (2011) Amine-modified MCM-41 mesoporous silica for carbon dioxide capture. Microporous Mesoporous Mater 143(1):174–179. doi:10.1016/j.micromeso.2011.02.022

    Article  Google Scholar 

  11. Ding Y, Alpay E (2001) High temperature recovery of CO2 from flue cases using hydrotalcite adsorbent. Process Saf Environ Prot 79:45–51. doi:10.1205/095758201531130

    Article  Google Scholar 

  12. Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348. doi:10.1081/SS-200042244

    Article  Google Scholar 

  13. Summerfield IR, Dennison DJ, Davidson G (1993) Membrane development for the separation of H2 and CO2: Pd/Ag alloy membranes. Gas cleaning at high temperatures, pp 663–670. doi: 10.1007/978-94-011-2172-9_41

  14. Veawab A, Tontiwachwuthikul P, Chakma A (1999) Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind Eng Chem Res 38(10):3917–3924. doi:10.1021/ie9901630

    Article  Google Scholar 

  15. Chatti R, Bansiwal AK, Thote JA, Kumar V, Jadhav P, Lokhande SK, Biniwale RB, Labhestwar NK, Rayalu SS (2009) Amine loaded zeolites for carbon dioxide capture: amine loading and adsorption studies. Microporous Mesoporous Mater 121(1–3):84–89. doi:10.1016/j.micromeso.2009.01.007

    Article  Google Scholar 

  16. James C, Fisher II, Tanthana J, Chuang S (2009) Oxide-supported tetraethylenepentamine for CO2 capture. Environ Prog Sustain Energy 28(4):589–598. doi:10.1002/ep.10363

    Article  Google Scholar 

  17. Wang L, Yao ML, Hu X, Hu G, Lu J, Luo M, Fan M (2015) Amine-modified ordered mesoporous silica: the effect of pore size on CO2 capture performance. Appl Surf Sci 324:286–292. doi:10.1016/j.apsusc.2014.10.135

    Article  Google Scholar 

  18. Frising T, Leflaive P (2008) Extraframework cation distributions in X and Y faujasite zeolites: a review. Microporous Mesoporous Mater 114(1–3):27–63. doi:10.1016/j.micromeso.2007.12.024

    Article  Google Scholar 

  19. Legras B, Polaert I, Estel L, Thomas M (2012) Effect of alkaline cations in zeolites on their dielectric properties. J Microw Power Electromagn Energy 46(1):5–11

    Article  Google Scholar 

  20. Newsome D, Coppens MO (2015) Molecular dynamics as a tool to study heterogeneity in zeolites—effect of Na+ cations on diffusion of CO2 and N-2 in Na-ZSM-5. Chem Eng Sci 121:300–312. doi:10.1016/j.ces.2014.09.024

    Article  Google Scholar 

  21. Liu XS, Iu KK, Thomas JK (1992) Encapsulation of TiO2 in Zeolite Y. Chem Phys Lett 195(2–3):163–168. doi:10.1016/0009-2614(92)86129-6

    Article  Google Scholar 

  22. Bacsik Z, Atluri R, Garcia-Bennett AE, Hedin N (2010) Temperature-induced uptake of CO2 and formation of carbamates in mesocaged silica modified with n-propylamines. Langmuir 26(12):10013–10024. doi:10.1021/la1001495

    Article  Google Scholar 

  23. Kayabali K, Kezer H (1998) Testing the ability of bentonite-amended natural zeolite (clinoptinolite) to remove heavy metals from liquid waste. Environ Geol 34(2–3):95–102. doi:10.1007/s002540050259

    Google Scholar 

  24. Kaya A, Durukan S (2004) Utilization of bentonite-embedded zeolite as clay liner. Appl Clay Sci 25(1–2):83–91. doi:10.1016/j.clay.2003.07.002

    Article  Google Scholar 

  25. Xie J, Tamaki J (2007) Parameterization of micro-hardness distribution in granite related to abrasive machining performance. J Mater Process Technol 186(1–3):253–258. doi:10.1016/j.jmatprotec.2006.12.041

    Article  Google Scholar 

  26. Hildebrando EA, Andrade CGB, da Rocha CAF, Angelica RS, Valenzuela-Diaz FR, Neves RD (2014) Synthesis and characterization of zeolite NaP using kaolin waste as a source of silicon and aluminum. Mater Res Ibero Am J Mater 17:174–179

    Google Scholar 

  27. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2002) Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy Fuels 16(6):1463–1469. doi:10.1021/ef020058u

    Article  Google Scholar 

  28. Xu XC, Song CS, Andresen JM, Miller BG, Scaroni AW (2003) Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41. Microporous Mesoporous Mater 62(1–2):29–45. doi:10.1016/S1387-1811(03)00388-3

    Article  Google Scholar 

  29. Yang GS (2014) The effect of different moisture levels on the toluene desorption rates of modified natural zeolite during MW irradiation. J Mater Cycles Waste Manag. doi:10.1007/s10163-014-0327-x

    Google Scholar 

  30. Tang X, Tian Q, Zhao BY, Hu K (2007) The microwave electromagnetic and absorption properties of some porous iron powders. Mater Sci Eng Struct Mater Prop Microstruct Process 445:135–140. doi:10.1016/j.msea.2006.09.008

    Article  Google Scholar 

  31. Cheng YL, Dai JM, Wu DJ, Sun YP (2010) Electromagnetic and microwave absorption properties of carbonyl iron/La0.6Sr0.4MnO3 composites. J Magn Magn Mater 322(1):97–101. doi:10.1016/j.jmmm.2014.01.033

    Article  Google Scholar 

  32. Guo J, Duan Y, Liu L, Chen L, Liu S (2011) Electromagnetic and microwave absorption properties of carbonyl-Iron/Fe91Si9 composites in gigahertz range. Sci Res Acad Publr 3(5):140–146. doi:10.4236/jemaa.2011.35023

    Google Scholar 

  33. Katoh M, Yoshikawa T, Tomonari T, Katayama K, Tomida T (2000) Adsorption characteristics of ion-exchanged ZSM-5 zeolites for CO2/N-2 mixtures. J Colloid Interface Sci 226(1):145–150. doi:10.1006/jcis.2000.6795

    Article  Google Scholar 

  34. Hiyoshi N, Yogo K, Yashima T (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous Mesoporous Mater 84(1–3):357–365. doi:10.1016/j.micromeso.2005.06.010

    Article  Google Scholar 

  35. Serna-Guerrero R, Da’na E, Sayari A (2008) New insights into the interactions of CO2 with amine-functionalized silica. Ind Eng Chem Res 47(23):9406–9412. doi:10.1021/ie801186g

    Article  Google Scholar 

  36. Planas N, Dzubak AL, Poloni R, Lin LC, McDonald TM, Neaton JB, Long JR, Smit B, Gagliardi L (2013) The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. J Am Chem Soc 135(20):7402–7405. doi:10.1021/ja4004766

    Article  Google Scholar 

  37. Ramanathan T, Fisher FT, Ruoff RS, Brinson LC (2005) Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem Mater 17(6):1290–1295. doi:10.1021/cm048357f

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Climate Change Specialization Graduate School of Chonbu National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Su Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantarifard, A., Ghavaminejad, A. & Yang, G.S. High CO2 adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristics with microwave. J Mater Cycles Waste Manag 19, 394–405 (2017). https://doi.org/10.1007/s10163-015-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0436-1

Keywords

Navigation