Skip to main content
Log in

Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Novel heterogeneous iron doped fluorapatite (Fe-FAp) catalysts were prepared by co-precipitation in the presence of amino acids, glutamic acid, aspartic acid, glycine, and histidine to establish their influence on catalytic activity of Fe-FAps. The four materials, named Fe-FAp/glutamic acid, Fe-FAp/aspartic acid, Fe-FAp/glycine, Fe-FAp/histidine, were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, microscopic (FE-SEM and HR-TEM) analysis, and N2 sorption isotherms. Amino acids influenced the crystal growth and morphology of Fe-FAps differently and generated materials with diverse morphological features in size, pore properties and surface areas. The efficacy of different Fe-FAps as heterogeneous catalysts in the value added conversion of various aromatic aldehydes to thio-triazole derivatives with ethanol as solvent was investigated. For the title reaction, glutamic acid assisted Fe-FAp displayed superior activity with 96 % yield in a short-interval of times (10 min) at room temperature. Employing the optimized conditions, six different 1,2,4-triazolidine-3-thione derivatives were synthesized in excellent yields (91–96 %) at reaction temperature in <20 min time.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9

Similar content being viewed by others

References

  1. H.R. Ramananarivo, A. Solhy, J. Sebti, A. Smahi, M. Zahouily, J. Clark, S. Sebt, ACS Sustain. Chem. Eng. 1, 403–409 (2013)

    Article  CAS  Google Scholar 

  2. C.W. Wu, Y.H. Yang, Y.H. Liang, H.Y. Chen, E. Sung, Y. Yamauchi, F.H. Lin, Curr. Nanosci. 7, 926–931 (2011)

    Article  CAS  Google Scholar 

  3. L. Deng, Y. Liu, T. Huang, T. Sun, Chem. Eng. J. 287, 83–91 (2016)

    Article  CAS  Google Scholar 

  4. Y.T. Huang, M. Imura, Y. Nemoto, C.H. Cheng, Y. Yamauchi, Sci. Technol. Adv. Mater. 12, 045005 (2011). (6 pp)

    Article  Google Scholar 

  5. A. Sharifnabi, M.H. Fathi, B.E. Yekta, M. Hossainalipour, Appl. Surf. Sci. 288, 331–340 (2014)

    Article  CAS  Google Scholar 

  6. E.R. Kramer, A.M. Morey, M. Staruch, S.L.S.M. Jain, J.I. Budnick, M. Wei, J. Mater. Sci. 48, 665–673 (2013)

    Article  CAS  Google Scholar 

  7. A.R. Shafeek, S. Santosh, Y. Mohsinkhan, M. Suleman, M.Y. Taufeekaslam, RSC Adv. 5, 24675–24680 (2015)

    Article  Google Scholar 

  8. A. Smahi, A. Solhy, H. Badaoui, A. Amoukal, A. Tikad, M. Maizi, S. Sebti, Appl. Catal. A 250, 151–159 (2003)

    Article  CAS  Google Scholar 

  9. E. Iyyappan, P. Wilson, Ceram. Int. 39, 771–777 (2013)

    Article  CAS  Google Scholar 

  10. P. Miceli, S. Bensaid, N. Russo, D. Fino, Chem. Eng. J. 278, 190–198 (2015)

    Article  CAS  Google Scholar 

  11. G. Zhou, B. Gui, H. Xie, F. Yang, Y. Chen, S. Chen, X. Zheng, J. Ind. Eng. Chem. 20, 160–165 (2014)

    Article  CAS  Google Scholar 

  12. S.G. Hosseini, R. Abazari, A. Gavi, Solid State Sci. 37, 72–79 (2014)

    Article  CAS  Google Scholar 

  13. W. Xia, K. Chen, A. Takahashi, X. Li, X. Mu, C. Han, L. Liu, I. Nakamura, T. Fujitani, Catal. Commun. 73, 27–33 (2016)

    Article  CAS  Google Scholar 

  14. M. Gruselle, J. Organomet. Chem. 793, 93–101 (2015)

    Article  CAS  Google Scholar 

  15. J. Zhao, X. Dong, M. Bian, J. Zhao, Y. Zhang, S. Yue, J.H. Chen, X.H. Wang, Appl. Surf. Sci. 314, 1026–1033 (2014)

    Article  CAS  Google Scholar 

  16. Y.J. Wu, Y.H. Tseng, J.C.C. Chan, Cryst. Growth Des. 10, 4240–4242 (2010)

    Article  CAS  Google Scholar 

  17. N. Zhiqiang, L. Yadong, Chem. Mater. 26, 72–83 (2014)

    Article  Google Scholar 

  18. H. Chen, K. Sun, Z. Tang, R.V. Law, J.F. Mansfield, A.C. Jakubowska, B.H. Clarkson, Cryst. Growth Des. 6, 1504–1508 (2006)

    Article  CAS  Google Scholar 

  19. F. Jones, M.I. Ogden, CrystEngComm 12, 1016–1023 (2010)

    Article  CAS  Google Scholar 

  20. E.T. Hwang, R. Tatavarty, J. Chung, M.B. Gu, ACS Appl. Mater. Interfaces 5, 532–537 (2013)

    Article  CAS  Google Scholar 

  21. M. Li, X. Wu, J. Zhou, Q. Kong, C. Li, J. Colloid Interface Sci. 467, 115–120 (2016)

    Article  CAS  Google Scholar 

  22. T. Maruyama, Y. Fujimoto, T. Maekawa, J. Colloid Interface Sci. 447, 254–257 (2015)

    Article  CAS  Google Scholar 

  23. H.G. Zhang, Q.S. Zhu, Y. Wang, Chem. Mater. 17, 5824–5830 (2005)

    Article  CAS  Google Scholar 

  24. K. Viipsi, S. Sjorberg, K. Tonsuaadu, A. Shchukarev, J. Hazard. Mater. 252–253, 91–98 (2013)

    Article  Google Scholar 

  25. Y. Sun, H. Yang, D. Tao, Ceram. Int. 38, 6937–6941 (2012)

    Article  CAS  Google Scholar 

  26. D. Gonga, W. Liu, W. Pana, T. Chen, X. Jia, K.W. Huang, X. Zhangd, J. Mol. Catal. A Chem. 406, 78–84 (2015)

    Article  Google Scholar 

  27. X. Zhao, L. Huang, H. Li, H. Hu, J. Han, L. Shi, D. Zhang, Chin. J. Catal. 36, 1886–1899 (2015)

    Article  CAS  Google Scholar 

  28. M. Peld, K.T. Onsuaadu, V. Bender, Environ. Sci. Technol. 38, 5626–5631 (2004)

    Article  CAS  Google Scholar 

  29. A. Saber, A. Smahi, A. Solhy, R. Nazih, B. Elaabar, M. Maizi, S. Sebti, J. Mol. Catal. A Chem. 202, 229–237 (2003)

    Article  CAS  Google Scholar 

  30. A. Venugopal, M.S. Scurrell, Appl. Catal. A 245, 137–147 (2003)

    Article  CAS  Google Scholar 

  31. K. Kaneda, T. Mizugaki, Energy Environ. Sci. 2, 655–673 (2009)

    Article  CAS  Google Scholar 

  32. C. Mondelli, D. Ferri, A. Baiker, J. Catal. 258, 170–176 (2008)

    Article  CAS  Google Scholar 

  33. M. Nasrollahzadeh, S.M. Sajadi, Y. Mirzaei, J. Colloid Interface Sci. 468, 156–162 (2016)

    Article  CAS  Google Scholar 

  34. W. Yu, L. Jiang, C. Shen, W. Xu, P. Zhang, Catal. Commun. 79, 11–16 (2016)

    Article  CAS  Google Scholar 

  35. P. Iniyavan, G.L. Balaji, S. Sarveswari, V. Vijayakumar, Tetrahedron Lett. 56, 5002–5009 (2015)

    Article  CAS  Google Scholar 

  36. J.K. Sahu, S. Ganguly, A. Kaushik, Chin. J. Nat. Med. 11, 0456–0465 (2013)

    CAS  Google Scholar 

  37. P. Kumar, C. Joshi, A.K. Srivastava, P. Gupta, R. Boukherroub, S.L. Jain, ACS Sustain Chem. Eng. 4, 69–75 (2016)

    Article  CAS  Google Scholar 

  38. L. Turker, Def. Tech. 12, 1–15 (2016)

    Article  Google Scholar 

  39. S. Singh, S.B. Jonnalagadda, Bull. Chem. Soc. Ethiop. 27, 57–68 (2013)

    CAS  Google Scholar 

  40. M.K. Pillai, S. Singh, S.B. Jonnalagadda, Synth. Commun. 41, 3710–3715 (2010)

    Article  Google Scholar 

  41. S. Singh, S.B. Jonnalagadda, Catal. Lett. 120, 200–206 (2008)

    Article  Google Scholar 

  42. M.K. Pillai, S. Singh, S.B. Jonnalagadda, Kinet. Catal. 52, 536–539 (2011)

    Article  CAS  Google Scholar 

  43. H. Wang, K. Sun, A. Li, W. Wang, P. Chui, Powder Technol. 209, 9–14 (2011)

    Article  CAS  Google Scholar 

  44. A. Antonakos, E. Liarokapis, T. Leventouri, Biomaterials 28, 3043–3054 (2007)

    Article  CAS  Google Scholar 

  45. M. Chen, D. Jiang, D. Li, J. Zhu, G. Li, J. Xie, J. Alloys Compd. 485, 396–401 (2009)

    Article  CAS  Google Scholar 

  46. H. Roosta, A. Dashti, S.H. Mazloumi, F. Varaminian, J. Mol. Liq. 215, 656–663 (2016)

    Article  CAS  Google Scholar 

  47. M.F. Mady, J.M. Bak, H. Lee, M.A. Kelland, Chem. Eng. Sci. 119, 230–235 (2014)

    Article  CAS  Google Scholar 

  48. A. Takahashi, W. Xia, Q. Wu, T. Furukawa, I. Nakamura, H. Shimada, T. Fujitani, Appl. Catal. A 467, 380–385 (2013)

    Article  CAS  Google Scholar 

  49. N.Y. Chen, W.E. Garwood, F.G. Dwyer, Olefin Reactions, Shape Selective Catalysis in Industrial Applications, 2nd edn. (Marcel Dekker, Inc., New York, 1996), pp. 64–76

    Google Scholar 

  50. R. Rathinam, A. Lalitha, RSC Adv. 5, 51188–51192 (2015)

    Article  Google Scholar 

  51. D.P. Jayavant, D.M. Pore, RSC Adv. 4, 14314–14319 (2014)

    Article  Google Scholar 

  52. M.M. Mane, D.M. Pore, Tetrahedron Lett. 55, 6601–6604 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank National Research Foundation, Pretoria, South Africa, and University of KwaZulu-Natal, South Africa, for financial assistance and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekantha B. Jonnalagadda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangu, K.K., Maddila, S., Maddila, S. et al. Efficient synthetic route for thio-triazole derivatives catalyzed by iron doped fluorapatite. Res Chem Intermed 43, 1793–1811 (2017). https://doi.org/10.1007/s11164-016-2730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2730-5

Keywords

Navigation