Skip to main content
Log in

Preparation of pure and Sm-doped Na0.5Bi0.5TiO3 nanosized powders by sol–gel method and their electrical properties

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The sol–gel method was applied to synthesize Na0.5Bi0.5TiO3 (NBT) sols and ceramic powders by using glycol as solvent and the optimized condition was determined. The optimized preparation parameters were selected as follows: reaction temperature = 20 °C, pH of sol system = 3.5, nNBT:nglycol (mol) = 1:12, drying temperature = 150 °C, annealing temperature = 350 °C and calcination temperature = 700 °C. In this condition, the prepared powders show pure perovskite phase and good crystalline structure with uniform size about 50 nm, and their resistivity was 3.71 × 106 Ω m at room temperature. Then, Sm-doped Na0.5Bi0.5TiO3 ceramic powders were also prepared by using the sol–gel method, and the changes in constitution, structure, and electrical properties before and after Sm-doping were characterized. The resistivity of modified NBT powders was distinctly decreased after Sm-doping. With an increase in Sm content, the resistivity first increases and then decreases, and its lowest value was 2.41 × 105 Ω m with 0.5 at% Sm content. The dielectric properties of modified NBT powders were also improved by Sm-doping, which reveals a higher dielectric constant, stable dielectric constant curve and dielectric loss curve with an increase in frequency. XRD and SEM analyses demonstrate that there are no new phases appearing in Sm-doped specimens, but the cell parameters have changed and grain size has increased, which would be devoted to the enhancement of the electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Shanmuga, K. Binay, R. Asokan, K. Dhanasekaran, Appl. Surf. Sci. 265, 296–301 (2013)

    Article  Google Scholar 

  2. F. Xiaolei, S. Bo, Z. Jiwei, Y. Xi, J. Sol-Gel Sci. Technol. 58, 1–5 (2011)

    Article  Google Scholar 

  3. V.A. Isupov, Ferroelectrics 315, 123–147 (2005)

    Article  CAS  Google Scholar 

  4. S.C. Zhao, G.R. Li, A.L. Ding, J. Phys. D Appl. Phys. 39, 2277–2281 (2006)

    Article  CAS  Google Scholar 

  5. Z. Haiwu, Z. Qinhui, Z. Xiangyong, L. Xiaobing, W. Dong, L. Haosu, Appl. Phys. Lett. 102, 202904 (2013)

    Article  Google Scholar 

  6. E.M. Henry, P.F. Rodrigo, A.S. Gerold, J. Eur. Ceram. Soc. 33, 3015–3022 (2013)

    Article  Google Scholar 

  7. Y. Huabin, Z. Changrong, Z. Qin, C. Guohua, J. Alloys Compd. 542, 17–21 (2012)

    Article  Google Scholar 

  8. Q. Xu, S. Wu, S. Chen, Mater. Res. Bull. 40, 373–382 (2005)

    Article  CAS  Google Scholar 

  9. A. Hussain, J.U. Rahman, F. Ahmed, J.S. Kim, M.-H. Kim, T.-K. Song, W.-J. Kim, J. Eur. Ceram. Soc. 35, 919–925 (2015)

    Article  CAS  Google Scholar 

  10. M.K. Zhu, L.Y. Liu, Y.D. Hou, J. Am. Ceram. Soc. 90(1), 120–126 (2007)

    Article  CAS  Google Scholar 

  11. P. Pusit, R. Gobwute, A. Supon, J. Eur. Ceram. Soc. 24, 517–520 (2004)

    Article  Google Scholar 

  12. C.Y. Kim, T. Sekino, K. Niihara, J. Am. Ceram. Soc. 86(9), 1464–1467 (2003)

    Article  CAS  Google Scholar 

  13. D. Peng, L. Laihui, L. Weiping, Z. Yuepin, C. Hongbing, J. Alloys Compd. 551, 219–223 (2013)

    Article  Google Scholar 

  14. A. Elena, S.F. Jennifer, M.F. Humberto, J. Appl. Phys. 112, 054111 (2012)

    Article  Google Scholar 

  15. A. Rajani Malathi, G.S. Kumar, G. Prasad, Phase Transit. 88, 169–182 (2015)

    Article  Google Scholar 

  16. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, H. Khemakhem, J. Alloys Compd. 618, 643–648 (2015)

    Article  CAS  Google Scholar 

  17. M. Elisa, G. Carmen, L.C. Anna, A. Stefania, S. Alessandra, J. Sol-Gel Sci. Technol. 46, 39–45 (2008)

    Article  Google Scholar 

  18. X. Liu, X.J. Zheng, X.J. Liu, K.S. Zhou, D.H. Huang, J. Electroceram. 29, 270–276 (2012)

    Article  CAS  Google Scholar 

  19. T. Yoshiaki, H. Takakiyo, U. Michihito, A. Hideaki, F. Eiji, J. Am. Ceram. Soc. 95(11), 3547–3553 (2012)

    Article  Google Scholar 

  20. G. Rohini, S. Anatoliy, R. Rajeev, J. Phys. Condens. Matter 24, 455902 (2012)

    Article  Google Scholar 

  21. L.Y. Liu, R.Z. Wang, M.K. Zhu, Y.D. Hou, Chin. Phys. B 22(3), 036401 (2013)

    Article  Google Scholar 

  22. T.M. Usher, J.S. Forrester, C.R. Cruz, J.L. Jones, Appl. Phys. Lett. 101, 152906 (2012)

    Article  Google Scholar 

  23. H. Sui, C. Yang, F. Geng, C. Feng, Mater. Lett. 139, 284–287 (2015)

    Article  CAS  Google Scholar 

  24. H. Zhang, C. Chen, X. Zhao, H. Deng, B. Ren, X. Li, H. Luo, S. Li, Solid State Commun. 201, 125–129 (2015)

    Article  CAS  Google Scholar 

  25. Y. Sun, H. Liu, H. Hao, L. Zhang, S. Zhang, Ceram. Int. 41, 931–939 (2015)

    Article  CAS  Google Scholar 

  26. X. Tian, Z. Wu, Y. Jia, J. Chen, R. Zheng, Y. Zhang, H. Luo, Appl. Phys. Lett. 102, 042907 (2013)

    Article  Google Scholar 

  27. D. Peng, L. Laihui, L. Weiping, Z. Yuepin, C. Hongbing, Mater. Sci. Eng. B 178, 1219–1223 (2013)

    Article  Google Scholar 

  28. M. Zannen, H. Khemakhem, A. Kabadou, M. Es-Souni, J. Alloys Compd. 555, 56–61 (2013)

    Article  CAS  Google Scholar 

  29. R.C.S.A. Helen, M.S. Luciana, J.F. William, D.S.M.S. Nelcy, J. Sol-Gel Sci. Technol. 64, 543–548 (2012)

    Article  Google Scholar 

  30. C. Xiaoyong, C. Wei, F. Chunlin, C. Huaqiang, Z.S. Qiang, J. Sol-Gel Sci. Technol. 57, 149–156 (2011)

    Article  Google Scholar 

  31. R. Fabien, M. Barbara, K. Marija, M. Jean-Pierre, J. Sol-Gel Sci. Technol. 46, 117–125 (2008)

    Article  Google Scholar 

  32. A. Garcı´a Murillo, F.J. Carrillo Romo, M. García Hernández, J. Ramírez Salgado, M.A. Domínguez Crespo, S.A. Palomares Sánchez, H. Terrones, J Sol-Gel. Sci Technol. 53, 121–133 (2010)

    Article  Google Scholar 

  33. P. Kusum, S. Anshu, B. Kanchan, N.S. Negi, AIP Conf. Proc. 1536, 1320 (2013)

    Google Scholar 

  34. F. Jean, J.R. Duclère, F. Rémondière, A. Boulle, S. Députier, V. Coudert, M. Guilloux-Viry, Mater. Lett. 107, 299–302 (2013)

    Article  CAS  Google Scholar 

  35. K. Spela, V. Asja, S. Danilo, Ceram. Int. 39, 5991–5995 (2013)

    Article  Google Scholar 

  36. L. Laihui, D. Peng, L. Weiping, T. Weidong, C. Hongbing, J. Appl. Phys. 114, 124104 (2013)

    Article  Google Scholar 

  37. H. Chongjun, Z. Yungang, S. Liang, W. Jiming, W. Tong, X. Feng, D. Chaoling, Z. Kongjun, L. Youwen, J. Phys. D Appl. Phys. 46, 46245104 (2013)

    Google Scholar 

  38. S. Matt, A.F. Raymond, L. Jin, J. Electron. Mater. 27, 1167–1176 (1998)

    Article  Google Scholar 

  39. S. Jian-lin, D. Yoichi, S. Yukio, J. Mater. Sci. 40, 5711–5719 (2005)

    Article  Google Scholar 

  40. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)

Download references

Acknowledgment

This work was supported by the National Science Foundation in China No. 20571020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hao, S., Fu, D. et al. Preparation of pure and Sm-doped Na0.5Bi0.5TiO3 nanosized powders by sol–gel method and their electrical properties. Res Chem Intermed 42, 963–975 (2016). https://doi.org/10.1007/s11164-015-2066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2066-6

Keywords

Navigation