Skip to main content
Log in

A facile chemical route to prepare Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders and microwave dielectric materials

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

High-purity Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders with perovskite structure, which were employed to prepare microwave dielectric ceramics, were produced by a facile chemical route from a solution containing neodymium oxide, zinc nitrate hexahydrate, cobalt nitrate hexahydrate, tetrabutyl titanate, citric acid, and ethylene glycol based on a citrate precursor process. Furthermore, the sintering behavior, microstructure, and microwave dielectric properties of Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 ceramics were evaluated. XRD and FT-IR results showed that the polymeric precursor could directly transform into Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders without forming any intermediate phase. TEM results revealed that the as-obtained powders after calcination treatment at 800 °C were approximately spherical in shape and slightly agglomerated with an average particle size of 15 nm. Typical microwave dielectric properties of εr = 35.26, Q × f = 236,800 GHz (f = 9.52 GHz), and τf = –28.6 ppm/°C were achieved for the Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 ceramics with a relative density of 98.7% sintered at 1250 °C for 2 h.

The nanostructured Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders synthesized by a facile chemical route based on the citrate precursor exhibit high sintering ability and slightly agglomerated, which are attributed to the reduction of sintering temperature and improvement of microwave dielectric properties of the bulk ceramics.

Highlights

  • Single phase Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders were produced by the citrate precursor process.

  • Nanoparticles prepared by the citrate precursor method possess high sinterability.

  • High-quality microwave ceramics can be prepared at low sintering temperature.

  • Citrate precursor route is an energy-efficient and simple method to prepare oxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reaney IM, Iddles D (2006) Microwave dielectric ceramics for resonators and filters in mobile phone networks. J Eur Ceram Soc 89:2063–2072

    CAS  Google Scholar 

  2. Mirsaneh M, Leisten OP, Zalinska B, Reaney IM (2008) Circularly polarized dielectric–loaded antennas: current technology and future challenges. Adv Funct Mater 18:2293–2300

    Article  CAS  Google Scholar 

  3. Liu B, Li L, Liu XQ, Chen XM (2016) Structural evolution of SrLaAl1-x(Zn0.5Ti0.5)xO4 ceramics and effects on their microwave dielectric properties. J Mater Chem C 4:4684–4691

    Article  CAS  Google Scholar 

  4. Cava RJ (2001) Dielectric materials for applications in microwave communications. J Mater Chem 11:54–62

    Article  CAS  Google Scholar 

  5. Tamura H, Konoike T, Sakabe Y, Wakino KK (1984) Improved high Q dielectric resonators with complex perovskite structure. J Am Ceram Soc 67:C59–C61

    Article  CAS  Google Scholar 

  6. Kawashima S, Nishida M, Ueda I, Ouchi H (1983) Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies. J Am Ceram Soc 66:421–423

    Article  CAS  Google Scholar 

  7. Lufasso MW (2004) Crystal structures, modeling and dielectric property relationship of 2:1 ordered Ba3MM'2O9 (M=Mg, Ni, Zn; M’=Nb, Ta) perovskites. Chem Mater 35:2148–2156

    Article  CAS  Google Scholar 

  8. Matsumoto H, Tamura H, Wakino K (1991) Ba(MgTa)O3–BaSnO3 high Q dielectric resonator. Jpn J Appl Phys 30:2347–2349

    Article  CAS  Google Scholar 

  9. Cho SY, Kim CH, Kim DW, Hong KS, Kim JH (1999) Dielectric properties of Ln(Mg1/2Ti1/2)O3 as substrates for high−Tc superconductor thin films. J Mater Res 14:2484–2487

    Article  CAS  Google Scholar 

  10. Huang CL, Tseng JF (2004) Dielectric characteristics of La(Co1/2Ti1/2)O3 ceramics at microwave frequencies. Mater Lett 58:3732–3736

    Article  CAS  Google Scholar 

  11. Tseng CF, Huang CL, Yang WR (2006) Dielectric characteristics of Nd(Zn1/2Ti1/2)O3 ceramics at microwave frequencies. J Am Ceram Soc 89:1465–1470

    Article  CAS  Google Scholar 

  12. Cho SY, Seo MK, Hong KS, Park SJ, Kim IT (1997) Influence of ZnO evaporation on the microwave dielectric properties of La(ZnTi)O3. Mater Res Bull 32:725–735

    Article  CAS  Google Scholar 

  13. Tseng CF, Huang CL, Hsu CH (2007) Low–dielectric loss characteristics of Nd(Co1/2Ti1/2)O3 ceramics at microwave frequencies. J Am Ceram Soc 90:1619–1622

    Article  CAS  Google Scholar 

  14. Soong HT, Hsu CS, Kuo MT, Huang CL (2004) Microwave characteristics of Sm(Co1/2Ti1/2)O3 dielectric resonators. Mater Lett 58:2829–2833

    Article  CAS  Google Scholar 

  15. Hsu CS, Soong HT, Yu CC, Huang CL, Ku MT (2007) The effect of sintering temperature and time on microwave properties of Sm(Zn1/2Ti1/2)O3 ceramics for resonators. Ceram Int 33:951–955

    Article  CAS  Google Scholar 

  16. Tseng CF (2008) Substituting effects of Zn on microstructural characteristics and microwave dielectric properties of Nd(Co1/2Ti1/2)O3 ceramics. J Am Ceram Soc 91:4101–4104

    Article  CAS  Google Scholar 

  17. Li JM, Fan CG, Yao LC, Qiu T (2018) Effects of Co substitution on structure and microwave dielectric properties of Nd(Zn0.5Ti0.5)O3ceramics (In Chinese). Chin J Process Eng 18:411–416

    CAS  Google Scholar 

  18. Chandel S, Thakur P, Thakurc SS, Kanwar V, Tomar M, Gupta V, Thakur A (2018) Effect of non-magnetic Al3+ doping on structural, optical, electrical dielectric and magnetic properties of BiFeO3 ceramics. Ceram Int 44:4711–4718

    Article  CAS  Google Scholar 

  19. Ivanova YA, Sutormina EF, Rudina NA, Nartova A, Isupova LA (2018) Effect of preparation route on Sr2TiO4 catalyst for the oxidative coupling of methane. Catal Commun 117:43–48

    Article  CAS  Google Scholar 

  20. Zdravković J, Simović B, Golubović A, Poleti D, Veljković I, Šćepanović M, Branković G (2015) Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors. Ceram Int 41:1970–1979

    Article  CAS  Google Scholar 

  21. Abraime B, Mahmoud A, Boschini F, Tamerd MA, Benyoussef A, Hamedoun M (2018) Tunable maximum energy product in CoFe2O4 nanopowder for permanent magnet application. J Magn Magn Mater 467:129–134

    Article  CAS  Google Scholar 

  22. Zhang YC, Fu BJ, Wang X (2009) Synthesis of ZnTa2O6 nano-powders by citrate sol–gel method. J Alloy Compd 478:498–500

    Article  CAS  Google Scholar 

  23. Akhtar MN, Hussain T, Khan MA, Ahmad M (2018) Structural, magnetic, dielectric and high frequency response of synthesized rare earth doped bismuth nano garnets (BIG). Results Phys 10:784–793

    Article  Google Scholar 

  24. Liu X, Zhu M, Chen ZH, Fang BJ, Ding JN, Zhao XY, Xu HQ, Luo HS (2014) Structure and electrical properties of Li-doped BaTiO3–CaTiO3–BaZrO3 lead-free ceramics prepared by citrate method. J Alloy Compd 613:219–225

    Article  CAS  Google Scholar 

  25. Lee TH, Sung YS, Cho JH, Song TK, Kim MH, Park TG, Cho HG (2018) La0.6Sr0.4Co0.2Fe0.79M0.01O3-δ (M = Ni, Pd) perovskites synthesized by citrate-EDTA method: oxygen vacancies effect on electrochemical properties. Adv Powder Techn 29:2804–2812

    Article  CAS  Google Scholar 

  26. Yu SQ, Jing W, Tang MJ, Xu T, Yin WL, Kang B (2019) Fabrication of Nd:YAG transparent ceramics using powders synthesized by citrate sol-gel method. J Alloy Compd 772:751–759

    Article  CAS  Google Scholar 

  27. Zhang XF, Xu Q, Huang YH, Liu HX, Huang DP, Zhang F (2010) Low-temperature synthesis of superfine barium strontium titanate powder by the citrate method. Ceram Int 36:1405–1409

    Article  CAS  Google Scholar 

  28. Li JM, Wang H, Tan J, Fan CG (2019) Low temperature sintering and microwave dielectric properties of Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 ceramics derived from the powders synthesized by ethylenediaminetetraacetic acid precursor route. Ceram Int 45:24044–24051

    Article  CAS  Google Scholar 

  29. Hakki BW, Coleman PD (1960) A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans Microw Theory Techn 8:402–410

    Article  Google Scholar 

  30. Shkir M, Khan MT, AlFaify S (2019) Novel Nd-doping effect on structural, morphological, optical, and electrical properties of facilely fabricated PbI2 thin films applicable to optoelectronic devices. Appl Nanosci 9:1417–1426

    Article  CAS  Google Scholar 

  31. Shkir M, Arif M, Singh A, Yahia IS, Algarni H, AlFaify S (2019) A facile one-step flash combustion synthesis and characterization on C doped NiO nanostructures. Mater Sci Semicond Process 100:106–112

    Article  CAS  Google Scholar 

  32. Yang H, Xian T, Wei ZQ, Dai JF, Jiang JL, Feng WJ (2011) Size controlled synthesis of BiFeO3 nanoparticles by a soft-chemistry route. J Sol-Gel Sci Techn 58:238–243

    Article  CAS  Google Scholar 

  33. Shao J, Tao Y, Wang J, Xu C, Wang WG (2009) Investigation of precursors in the preparation of nanostructured La0.6Sr0.4Co0.2Fe0.8O3 via a modified combined complexing method. J Alloy Compd 484:263–267

    Article  CAS  Google Scholar 

  34. Li Y, Zhao JP, Wang B (2004) Low temperature preparation of nanocrystalline Sr0.5Ba0.5Nb2O6 powders using an aqueous organic gel route. Mater Res Bull 39:365–374

    Article  CAS  Google Scholar 

  35. Zhou DX, Huang GH, Chen XP, Xu JM, Gong SP (2004) Synthesis of LaAlO3 via ethylenediaminetetraacetic acid precursor. Mater Chem Phys 84:33–36

    Article  CAS  Google Scholar 

  36. Thomasa JK, Kumar HP, Solomon S, Mathai KC, Koshy J (2010) Nanocrystalline SrHfO3 synthesized through a single step auto-igniting combustion technique and its characterization. J Alloy Compd 508:532–535

    Article  CAS  Google Scholar 

  37. Cao W, Xu YB, Wang SJ, Lu PX, Huang GH, Xu CF (2005) Preparation of La(Zn0.5Ti0.5)O3 powders via citric acid precursor. Mater Lett 59:1914–1918

    Article  CAS  Google Scholar 

  38. Niasari MS, Soofivand F, Nasab AS, Arani MS, Faal AY, Bagheri S (2016) Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv Powder Technol 27:2066–2075

    Article  CAS  Google Scholar 

  39. Bohlender C, Kahnes M, Müller R, Töpfer J (2019) Phase formation, magnetic properties, and phase stability in reducing atmosphere of M-type strontium hexaferrite nanoparticles synthesized via a modified citrate process. J Mater Sci 54:1136–1146

    Article  CAS  Google Scholar 

  40. Cho SG, Johnson PF, Condrate RA (1990) Thermal decomposition of (Sr, Ti) organic precursors during the Pechini process. J Mater Sci 25:4738–4744

    Article  CAS  Google Scholar 

  41. Mansour SF, Abdo MA, Alwan SM (2018) The role of Cr3+ ions substitution on structural, magnetic and dielectric modulus of manganese zinc nanoferrites. Ceram Int 44:8035–8042

    Article  CAS  Google Scholar 

  42. Lou X, Weng WJ, Cheng K, Song CL, Du PY, Shen G, Han GR (2009) The effects of incomplete combustion on Ba2Ti9O20 phase formation in a citrate solution combustion method. Ceram Int 35:1725–1729

    Article  CAS  Google Scholar 

  43. Jinga C, Berger D, Matei C, Jinga S, Andronescu E (2010) Characterization of BaMg1/3(Ta1−xNbx)2/3O3 ceramics obtained by a modified Pechini method. J Alloy Compd 497:239–243

    Article  CAS  Google Scholar 

  44. Almeida CG, Andrade HMC, Mascarenhas AJS, Silva LA (2010) Synthesis of nanosized β-BiTaO4 by the polymeric precursor method. Mater Lett 64:1088–1090

    Article  CAS  Google Scholar 

  45. Singh RK, Shah J, Kotnala RK (2016) Magnetic and dielectric properties of rare earth substitutedNi0.5Zn0.5Fe1.95R0.05O4 (R = Pr, Sm and La) ferrite nanoparticles. Mater Sci Eng B 210:64–69

    Article  CAS  Google Scholar 

  46. Breeze JD, Perkins JM, McComb DW, Alford NM (2009) Do grain boundaries affect microwave dielectric loss in oxides? J Am Ceram Soc 92:671–674

    Article  CAS  Google Scholar 

  47. Sebastian MT (2008) Dielectric materials for wireless communication. Amsterdam, The Netherlands: Elsevier Ltd

  48. Li JM, Qiu T (2012) Microwave dielectric properties of Nd[(Zn1-xCox)0.5Ti0.5]O3 (0.025≤x≤0.1) ceramics. Ceram Int 38:2597–2600

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Anhui Provincial Education Department (Grant no. KJ2019A0054 and KJ2018A0041) and the National Natural Science Foundation of China (Grant no. 51802003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiamao Li or Chuangang Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, C., Wang, H. et al. A facile chemical route to prepare Nd[(Zn0.7Co0.3)0.5Ti0.5]O3 powders and microwave dielectric materials. J Sol-Gel Sci Technol 95, 375–383 (2020). https://doi.org/10.1007/s10971-020-05306-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05306-y

Keyword

Navigation