Skip to main content
Log in

Structural and morphological characteristics of polycrystalline BaTiO3:Er3+, Yb3+ ceramics synthesized by the sol–gel route: influence of chelating agents

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The preparation of a co-doped BaTiO3:Er, Yb compound was investigated using alkoxide precursors. The complex alkoxide was hydrolyzed under specific conditions using chelating agents [(AcAc)H and H–(OAc)], and nano-size powders and films of perovskite compounds were obtained. The nanostructure materials were formed through nucleation-aggregation growth. Through a comparison of co-doped BaTiO3:Er, Yb compounds (with and without chelating agents), important differences in shape and size of the particles were found. In addition, the use of chelating agents during the sol–gel process allowed us to obtain optical BaTiO3:Er, Yb thin films. The results suggest that the particle size and shape can be tailored in the current system by manipulating the simultaneous use of chelating agents and the crystallization temperature. Consequently, a wide range of particle size has an effect on the crystal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hasenkox U, Hoffmann S, Waser R (1998) J Sol–Gel Sci Tech 12:67

    Article  CAS  Google Scholar 

  2. Mackenzie JD, Xu Y (1997) J Sol–Gel Tech 8:673

    CAS  Google Scholar 

  3. Duran P, Moure C (1986) Mater Chem Phys 15:193

    Article  CAS  Google Scholar 

  4. Schwartz RN, Wechsler BA, West L (1995) Appl Phys Lett 67:1352

    Article  CAS  ADS  Google Scholar 

  5. Yi GC, Block BA, Ford GM, Wessels BW (1998) Appl Phys Lett 73:1625

    Article  CAS  ADS  Google Scholar 

  6. Hinojosa S, Meneses-Nava MA, Barbosa-García O, Díaz-Torres LA, Santoyo MA, Mosiño JF (2003) J Lumin 102–103:694

    Article  Google Scholar 

  7. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2004) J Appl Phys 96–1:661

    Article  ADS  Google Scholar 

  8. Meneses-Nava MA, Barbosa-García O, Maldonado JL, Ramos-Ortíz G, Pichardo JL, Torres-Cisneros M, García-Hernández M, García-Murillo A, Carrillo-Romo FJ (2008) Opt Mater 31:252

    Article  CAS  ADS  Google Scholar 

  9. Chatterjee S, Stojanovic BD, Maiti HS (2003) Mater Chem Phys 78:702

    Article  CAS  Google Scholar 

  10. Guo L, Luo H, Gao J, Guo L, Yang J (2006) Mater Lett 60:3011

    Article  CAS  Google Scholar 

  11. Hubert-Pfalzgraf LG (1998) Coord Chem Rev 178–180:967

    Article  Google Scholar 

  12. Qi L, Lee BI, Badheka P, Yoon D, Samuels WD, Exarhos GJ (2004) J Euro Ceram Soc 24(13):3553

    Article  CAS  Google Scholar 

  13. Xu H, Gao L, Guo J (2002) J Eur Ceram Soc 22:1163

    Article  CAS  Google Scholar 

  14. van der Gijp S, Emond MHJ, Winnubst AJA, Verweij H (1999) J Eur Ceram Soc 19:1683

    Article  Google Scholar 

  15. Wang X, Lee BI, Hu M, Payzant EA, Blom DA (2006) J Eur Ceram Soc 26:2319

    Article  Google Scholar 

  16. Veith M, Mathur S, Lecerf N, Huch V, Decker T (2000) J Sol–Gel Tech 15:145

    Article  Google Scholar 

  17. Hreniak D, Strek W, Amami J, Guyot Y, Boulon G, Goutaudier C, Pazik R (2004) J Alloy Compd 380:348

    Article  CAS  Google Scholar 

  18. Pramanik NC, Seok SI, Ahn BY (2007) Mater Res Bull 42:497

    Article  CAS  Google Scholar 

  19. Manso-Silván M, Fuentes-Cobas L, Martín-Palma RJ, Hernández-Vélez M, Martínez-Duart JM (2002) Surf Coat Tech 151–152:118

    Article  Google Scholar 

  20. Wang D-Y, Chan HLW, Choy CL (1996) Appl Phys Lett 69:2968

    Article  Google Scholar 

  21. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, London, p 787

    Google Scholar 

  22. García-Murillo A, Le Luyer C, Garapon C, Dujardin C, Bernstein E, Pedrini C, Mugnier J (2002) Opt Mater 19:161

    Article  Google Scholar 

  23. García-Murillo A, Le Luyer C, Dujardin C, Pedrini C, Mugnier J (2001) Opt Mater 16:39

    Article  ADS  Google Scholar 

  24. Wu YJ, Li J, Tanaka H, Kuwabara M (2005) J Eur Ceram Soc 25:2041

    Article  CAS  Google Scholar 

  25. Harizanov O, Harizanova A, Ivanova T (2004) Mater Sci Eng B 106:191

    Article  Google Scholar 

  26. Harizanov OA (1998) Mater Lett 34:345

    Article  CAS  Google Scholar 

  27. Xu R, Shen M, Ge S, Gan Z, Cao W (2002) Thin Sol Film 406:113

    Article  CAS  ADS  Google Scholar 

  28. Kribalis S, Tsakiridis PE, Dedeloudis C, Hristoforou E (2006) J Optoelectron Adv Mater 8:1475

    CAS  Google Scholar 

  29. Sanchez C, Livage J, Henry M, Babonneau F (1988) J Non-Cryst Solids 100:65

    Article  CAS  ADS  Google Scholar 

  30. Livage J, Sanchez C, Hernry M, Doeuff S (1989) Solid State Ion 32–33:633

    Article  Google Scholar 

  31. Bahtat M, Mugnier J, Lou L, Bovier C, Serughetti J, Genet M (1992) J Opt 23:215

    Article  ADS  Google Scholar 

  32. Wenk HR, Matthies S, Lutterotti L (1994) Mater Sci Forum 157–162:473

    Article  Google Scholar 

  33. Ferrari M, Lutterotti L (1994) J Appl Phys 76:7246

    Article  CAS  ADS  Google Scholar 

  34. Stockenhuber M, Mayer H, Lercher JA (1993) J Am Ceram Soc 76(5):1185

    Article  CAS  Google Scholar 

  35. Kamalasanan MN, Kumar ND, Chandra S (1994) J Appl Phys 76:4603

    Article  CAS  ADS  Google Scholar 

  36. Livage J, Henry M, Sanchez C (1998) Prog Solid State Chem 18(4):259

    Article  Google Scholar 

  37. Hubert-Pfalzgraf LG (1987) New J Chem 11:663

    CAS  Google Scholar 

  38. Von Thiele KH, Panse M (1978) Z Anorg Allg Chem 441:23

    Article  CAS  Google Scholar 

  39. Yoko T, Kamiya K, Tanaka K (1990) J Mater Sci 25:3922

    Article  CAS  ADS  Google Scholar 

  40. Legrand-Buscema C, Malibert C, Bach S (2002) Thin Sol Films 418:79

    Article  CAS  ADS  Google Scholar 

  41. Livage J, Henry M (1988) In: Mackenzie JD, Ulrich DR (eds) Ultrastructure processing of advanced ceramics. Wiley, New York, p 183

    Google Scholar 

  42. Ghosh S, Dasgupta S, Sen A, Maiti HS (2007) Mater Lett 61:538

    Article  CAS  Google Scholar 

  43. Harizanov OA (1998) Mater Lett 34:232

    Article  CAS  Google Scholar 

  44. Hwang U-Y, Park H-S, Koo K-K (2004) J Am Ceram Soc 87:2168

    Article  CAS  Google Scholar 

  45. Cernea M, Monnereau O, Llewellyn P, Tortet L, Galassi C (2006) J Eur Ceram Soc 26:3241

    Article  CAS  Google Scholar 

  46. Amami J, Hreniak D, Guyot Y, Pazik R, Strek W, Goutaudier C, Boulon G (2007) J Phys Condens Matter 19:1

    Article  Google Scholar 

  47. Frey MH, Payne DA (1996) Phys Rev B 54:3158

    Article  CAS  ADS  Google Scholar 

  48. Yu J, Chu J, Zhang M (2002) Appl Phys A 74:645

    Article  CAS  ADS  Google Scholar 

  49. Takeuchi T, Ado K, Asai T, Kageyama H, Saito Y, Masquelier C, Nakamura O (1994) J Am Ceram Soc 77:1665

    Article  CAS  Google Scholar 

  50. Know S-W, Yoon D-H (2007) Ceram Int 33:1357

    Article  Google Scholar 

  51. Yu P, Wang X, Cui B (2007) Scripta Mater 57:623

    Article  CAS  Google Scholar 

  52. Li W, Xu Z, Chu R, Fu P, Hao J (2009) J Alloy Compd 484(1–2):137

    Article  Google Scholar 

  53. Zhang S, Jiang F, Qu G, Lin C (2008) Mater Lett 62:2225

    Article  CAS  Google Scholar 

  54. Huang F, Banfield JF (2003) Nano Lett 3:373

    Article  CAS  ADS  Google Scholar 

  55. Yang W-D, Haile SM (26) J Eur Ceram Soc 26:3203

    Article  Google Scholar 

  56. García Murillo A, de J. Morales Ramírez A, de J. Carrillo Romo F, García Hernández M, Domínguez Crespo MA (2009) Mater Lett 63:1631

    Article  Google Scholar 

  57. Murillo AG, de J. Carrillo Romo F, Luyer CL, Hernández MG, Sánchez SP (2009) J Sol–Gel Sci Technol 50(3):359

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the SIP-IPN (20090546, 20090528) and SEP-CONACYT (47279, 59408) projects. The authors would also thank Daniel Ramírez González from IPICYT for his help in the scanning electron microscopy, A. Garrido and A. Cruz for their help in the IR measurements and Juan Sergio Ramos Garza from Ecomaterials and Energy Department of UANL for BET analyses. M. García thanks to Conacyt for her scholarship grant. The invaluable technical support of Massimo Guglielmi is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García Murillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García Murillo, A., Carrillo Romo, F.J., García Hernández, M. et al. Structural and morphological characteristics of polycrystalline BaTiO3:Er3+, Yb3+ ceramics synthesized by the sol–gel route: influence of chelating agents. J Sol-Gel Sci Technol 53, 121–133 (2010). https://doi.org/10.1007/s10971-009-2069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-2069-0

Keywords

Navigation