Skip to main content
Log in

Photochemical degradation of polybrominated diphenyl ethers in microreactor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Knowledge of reaction mechanism and kinetics of persistent organic pollutants are crucial to development a removal technology. Feasibility of photochemical microreactor utilization as a tool for experimental investigation of photochemical degradation of polybrominated diphenyl ethers (PBDE) was studied. The degradation of deca-BDE in the photochemical microreactor with a thin irradiated liquid layer of variable thickness was investigated. The experimental results proved the significantly higher degradation rates of PBDE when compared to the published results obtained with the conventional photochemical reactors. After several minutes in microreactor the final and major degradation products were the mono brominated congeners. The extremely fast degradation of higher-brominated congeners allowed for the complete degradation of deca-BDE down to mono-BDE within short experimental times. The results confirmed the suitability of photochemical microreactors as beneficial tool for better understanding the degradation mechanism and kinetics of photodegradation of persistent organic pollutants due to significantly shorter experimental times needed for obtaining the necessary data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Konstantinov, D. Bejan, N.J. Bunce, B. Chittim, R. McCrindle, D. Potter, C. Tashiro, Chemosphere 72, 8 (2008)

    Article  Google Scholar 

  2. C.A. de Wit, Chemosphere 46, 5 (2002)

    Google Scholar 

  3. J. Eriksson, N. Green, G. Marsh, A. Bergman, Environ. Sci. Technol. 38, 11 (2004)

    Google Scholar 

  4. L. Fang, J. Huang, G. Yu, L. Wang, Chemosphere 71, 2 (2008)

    Article  Google Scholar 

  5. P.H. Peterman, C.E. Orazio, P.P. Peltz, Organohalogen Compdounds 63, 357–360 (2003)

    CAS  Google Scholar 

  6. L. Sanchez-Prado, M. Lores, M. Llompart, C. Garcia-Jares, J.M. Bayona, R. Cela, J. Chromatogr. A 1124, 1–2 (2006)

    Article  Google Scholar 

  7. P. Bendig, W. Vetter, Environ. Sci. Technol. 44, 5 (2010)

    Article  Google Scholar 

  8. L. Sanchez-Prado, M. Llompart, M. Lores, C. Garcia-Jares, R. Cela, J. Chromatogr. A 1071, 1–2 (2005)

    Article  Google Scholar 

  9. S. Ohta, D. Ishizuka, H. Nishimura, T. Nakao, O. Aozasa, Y. Shimidzu, F. Ochiai, T. Kida, H. Miyata, Organohalogen Compdounds 47, 218–221 (2000)

    CAS  Google Scholar 

  10. I. Watanabe, R. Tatsukawa, Bull. Environ. Contam. Toxicol. 39, 953–959 (1987)

    Article  CAS  Google Scholar 

  11. G. Soderstrom, U. Sellstrom, C.A. De Wit, M. Tysklind, Environ. Sci. Technol. 38, 1 (2004)

    Google Scholar 

  12. I. Hua, N. Kang, C.T. Jafvert, J.R. Fabrega-Duque, Environ. Toxicol. Chem. 22, 4 (2003)

    Article  Google Scholar 

  13. J. Bezares-Cruz, C.T. Jafvert, I. Hua, Environ. Sci. Technol. 38, 15 (2004)

    Article  Google Scholar 

  14. M. Oelgemoller, Chem. Eng. Technol. 35, 7 (2012)

    Article  Google Scholar 

  15. Y. Asano, S. Togashi, Photoreaction microreactor with reduced reflected light and high thermal conductivity, Patent WO2012157052A1, Hitachi, Ltd., Japan, p. 30 (2012)

  16. M. Krivec, K. Zagar, L. Suhadolnik, M. Ceh, G. Drazic, ACS Appl. Mater. Interfaces 5, 18 (2013)

    Article  Google Scholar 

  17. L. Li, R. Chen, X. Zhu, H. Wang, Y. Wang, Q. Liao, D. Wang, ACS Appl. Mater. Interfaces 5, 23 (2013)

    Google Scholar 

  18. N. Tsuchiya, K. Kuwabara, A. Hidaka, K. Oda, K. Katayama, Phys. Chem. Chem. Phys. 14, 14 (2012)

    Article  Google Scholar 

  19. A. Visan, D. Rafieian, W. Ogieglo and R.G.H., Lammertink Appl. Catal. B 150, 93–100 (2014)

  20. M. Oelgemoller, N. Hoffmann, O. Shvydkiv, Aust. J. Chem. 67, 3 (2014)

    Article  Google Scholar 

  21. P. Korytar, A. Covaci, J. de Boer, A. Gelbin, U.A.T. Brinkman, J. Chromatogr. A 1065, 2 (2005)

    Article  Google Scholar 

  22. Y.H. Shih, C.K. Wang, J. Hazard. Mater. 165, 1–3 (2009)

    Article  Google Scholar 

  23. C.Y. Sun, D. Zhao, C.C. Chen, W.H. Ma, J.C. Zhao, Environ. Sci. Technol. 43, 1 (2009)

    Article  Google Scholar 

  24. A. Christiansson, J. Eriksson, D. Teclechiel, A. Bergman, Environ. Sci. Pollution Res. 16, 3 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Czech Science Foundation Project No. GA104/09/0880 is gratefully acknowledged. J. Kristal also acknowledges support by the Czech Science Foundation Project No. P105/12/0664. S. Hejda also acknowledges support by the OPVK (Grant No. CZ.1.07/2.2.00/28.0205) and additional financial support by the Internal Grant Agency of the University of Jan Evangelista Purkyne in Usti nad Labem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kristal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajglova, Z., Vesely, M., Hejda, S. et al. Photochemical degradation of polybrominated diphenyl ethers in microreactor. Res Chem Intermed 41, 9373–9381 (2015). https://doi.org/10.1007/s11164-015-2033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2033-2

Keywords

Navigation