Skip to main content
Log in

Effect of different conditions on the size and quality of titanium dioxide nanoparticles synthesized by a reflux process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the work discussed in this paper, titanium dioxide (TiO2) nanoparticles with the anatase structure were synthesized by use of a reflux technique under different conditions. Titanium(IV) isopropoxide (TTIP), in ethanol–methanol solutions, was used as precursor. Prepared TiO2 powders were characterized by XRD, SEM, and TEM analysis. Different conditions, for example reactant concentration (TTIP:MeOH:EtOH:H2O), reflux time and temperature, and calcination temperature, were changed to achieve to best nanocrystallite material. It was found that variation of all these conditions could strongly affect crystallinity, morphology, and crystallite size. The size and crystallization of nanocrystallites, and their uniformity, were controlled by changing these conditions. The crystallite sizes of nanoparticles, estimated by use of the Scherrer formula, were from 9 to 27 nm. TiO2 nanoparticles of minimum size were obtained by use of minimum reflux and calcination temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Damardji, H. Khalaf, L. Duclaux, B. David, Appl. Clay Sci. 45, 98 (2009)

    Article  CAS  Google Scholar 

  2. R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, T. Tunno, Sens. Actuators B Chem. 127, 426 (2007)

    Article  CAS  Google Scholar 

  3. K.M. Lee, C.W. Hu, H.W. Chen, K.C. Ho, Sol. Energy. Mater. Sol. Cells 92, 1628 (2008)

    Article  CAS  Google Scholar 

  4. J. Chen, J. Zhang, Y. Xian, X. Ying, M. Liu, L. Jin, Water Res. 39, 1340 (2005)

    Article  CAS  Google Scholar 

  5. Y. Liu, L. Yan, Y. Wang, L. Xie, J. Zheng, X. Li, J. Hazard. Mater. 150, 153 (2008)

    Article  CAS  Google Scholar 

  6. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Cat. A 359, 25 (2009)

    Article  CAS  Google Scholar 

  7. Z. Tang, J. Zhang, Z. Cheng, Z. Zhang, Mater. Chem. Phys. 77, 314 (2002)

    Article  Google Scholar 

  8. S. Mahshid, M. Askari, M. Sasani Ghamsari, J. Mater. Process. Technol. 189, 296 (2007)

    Article  CAS  Google Scholar 

  9. M. Kaneko, I. Okura, Photocatalysis Science and Technology (Springer, Kodansha, 2002), pp. 332–336

    Google Scholar 

  10. W. Guo, Z. Lin, X. Wang, G. Song, Microelectron. Eng. 66, 95 (2003)

    Article  CAS  Google Scholar 

  11. V. Ramaswamy, N.B. Jagtap, S. Vijayanand, D.S. Bhange, P.S. Awati, Mater. Res. Bull. 43, 1145 (2008)

    Article  CAS  Google Scholar 

  12. C. Xiaobo, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  13. C.J. Brinker, G.W. Scherer, Sol-gel Science, 1st edn. (Academic, San Diego, 1990), pp. 112–117

    Google Scholar 

  14. B.A. Morales, O. Novaro, J. Mater. Res. 10, 2788 (1995)

    Article  CAS  Google Scholar 

  15. H.J. Nam, T. Amemiya, M. Murabayashi, K. Itoh, J. Phys. Chem. B 108, 8254 (2004)

    Article  CAS  Google Scholar 

  16. B.E. Yoldas, J. Appl. Chem. Biotechnol. 23, 803 (1973)

    Article  CAS  Google Scholar 

  17. M. Pal, J.G. Serrano, P. Santiago, U. Pal, J. Phys. Chem. C 111, 96 (2007)

    Article  CAS  Google Scholar 

  18. K.M. Lee, V. Suryanarayanan, K.C. Ho, Sol. Energy. Mater. Sol. Cells 90, 2398 (2006)

    Article  CAS  Google Scholar 

  19. R.K. Wahi, Y. Liu, J.C. Falkner, V.L. Colvin, J Colloid Interface Sci. 302, 530 (2006)

    Article  CAS  Google Scholar 

  20. J.C. Yu, J. Yu, L. Zhang, W. Ho, J. Photochem. Photobiol. A Chem. 148, 263 (2002)

    Article  CAS  Google Scholar 

  21. Y. Bessekhouad, D. Robert, J.V. Weber, J. Photochem. Photobiol. A Chem. 157, 47 (2003)

    Article  CAS  Google Scholar 

  22. U.G. Akpan, B.H. Hameed, J. Hazard. Mater. 170, 520 (2009)

    Article  CAS  Google Scholar 

  23. S. Mahshid, M. Askari, M.S. Ghamsari, J. Mater. Process. Technol. 189, 296 (2007)

    Article  CAS  Google Scholar 

  24. J.G. Li, H. Kamiyamaa, X.H. Wang, Y. Moriyoshi, T. Ishigaki, J. Eur. Ceram. Soc. 26, 423 (2006)

    Article  CAS  Google Scholar 

  25. P. Billik, G. Plesch, Scr. Mater. 56, 979 (2007)

    Article  CAS  Google Scholar 

  26. J. Lin, Y. Lin, P. Liu, M.J. Meziani, L.F. Allard, Y.P. Sun, J. Am. Chem. Soc. 124, 11514 (2002)

    Article  CAS  Google Scholar 

  27. N.C. Dasa, S. Upreti, P.E. Sokol, J. Exp. Nanosci. 5, 180 (2010)

    Article  Google Scholar 

  28. H.P. Klug, L.E. Alexander, X-ray diffraction methods for polycrystalline and amorphous materials (Wiley, New York, 1974), pp. 46–48

    Google Scholar 

  29. B. Li, X. Wang, M. Yan, L. Li, Mater. Chem. Phys. 78, 184 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Zabihi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhdoomi, H., Moghadam, H.M. & Zabihi, O. Effect of different conditions on the size and quality of titanium dioxide nanoparticles synthesized by a reflux process. Res Chem Intermed 41, 1777–1788 (2015). https://doi.org/10.1007/s11164-013-1311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1311-0

Keywords

Navigation