Skip to main content
Log in

Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by twisted phenylene bridges

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Two triads (i.e., 3PTZ–Pt–MNDI and 10PTZ–Pt–MNDI) consisting of 3-phenothiazine (3PTZ) or 10-phenothiazine (10PTZ), bipyridine–diacetylide platinum complex (Pt), and naphthalene diimide (MNDI) chromophores linked by highly twisted biphenylene spacers have been prepared. The formation and decay of the charge-separated (CS) states in toluene were studied by use of picosecond and nanosecond laser photolysis via selective excitation of the Pt moiety. The time required for formation of the CS state, PTZ+–Pt–MNDI, from PTZ–3Pt*–MNDI was determined to be τ CS = 280 ps for 3PTZ+–Pt–MNDI and τ CS = 230 ps for 10PTZ+–Pt–MNDI. The lifetimes of the CS states were determined to be τ CR1 = 75 ns (95 %) and τ CR2 = 285 ns (5 %) for 3PTZ+–Pt–MNDI and τ CR = 830 ns for 10PTZ+–Pt–MNDI. Formation and decay of the CS states are discussed in terms the Marcus theory and the spin-correlated radical pair mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The quantum yields for the formation of CS states for the excitation of 2 and 3 were estimated by using the relative intensities of 3Pt* (650 nm) and MNDI (470 nm) in the ps-laser photolysis (Fig. 5).

References

  1. K.E. McAuley, P.K. Fyfe, J.P. Ridge, N.W. Isaacs, R.J. Cogdell, M.R. Jones, Proc. Natl. Acad. Sci. USA 96, 14706–14711 (1999)

    Article  CAS  Google Scholar 

  2. G.J. Kavarnos, Fundamentals of Photoinduced Electron Transfer (Wiley, New York, 1993)

  3. J.W. Verhoeven, J. Photochem. Photobiol. C 7, 40–60 (2006)

    Article  CAS  Google Scholar 

  4. M. Borgström, N. Shaikh, O. Johansson, M.F. Anderlund, S. Styring, B. Åkermark, A. Magnuson, L. Hammarström, J. Am. Chem. Soc. 127, 17504–17515 (2005)

    Article  Google Scholar 

  5. L. Flamigni, J.-P. Collin, J.-P. Sauvage, Acc. Chem. Res. 41, 857–871 (2008)

    Article  CAS  Google Scholar 

  6. L. Flamigni, E. Baranoff, J.-P. Collin, J.-P. Sauvage, Chem. Eur. J. 12, 6592–6606 (2006)

    Article  CAS  Google Scholar 

  7. S. Chakraborty, T.J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, Inorg. Chem. 44, 6865–6878 (2005)

    Article  CAS  Google Scholar 

  8. J.E. McGarrah, Y.-J. Kim, M. Hissler, R. Eisenberg, Inorg. Chem. 40, 4510–4511 (2001)

    Article  CAS  Google Scholar 

  9. M. Hissler, J.E. McGarrah, W.B. Connick, D.K. Geiger, S.D. Cummings, R. Eisenberg, Coord. Chem. Rev. 208, 115–137 (2000)

    Article  CAS  Google Scholar 

  10. S.D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 118, 1949–1960 (1996)

    Article  CAS  Google Scholar 

  11. W. Paw, S.D. Cummings, M.A. Mansour, W.B. Connick, D.K. Geiger, R. Eisenberg, Coord. Chem. Rev. 171, 125–150 (1998)

    Article  CAS  Google Scholar 

  12. S. Suzuki, R. Sugimura, M. Kozaki, K. Keyaki, K. Nozaki, N. Ikeda, K. Akiyama, K. Okada, J. Am. Chem. Soc. 131, 10374–10375 (2009)

    Article  CAS  Google Scholar 

  13. H. Kawauchi, S. Suzuki, M. Kozaki, K. Okada, D.-M.S. Islam, Y. Araki, O. Ito, K. Yamanaka, J. Phys. Chem. A 112, 5878–5884 (2008)

    Article  CAS  Google Scholar 

  14. Y. Nomura, Y. Takeuchi, J. Chem. Soc. B 956–960 (1970)

  15. M. Hissler, W.B. Connick, D.K. Geiger, J.E. McGarrah, D. Lipa, R.J. Lachicotte, R. Eisenberg, Inorg. Chem. 39, 447–457 (2000)

    Article  CAS  Google Scholar 

  16. MOPAC2009, J.J.P. Stewart, Stewart Computational Chemistry, version 9.211W (2009). http://OpenMOPAC.net, Accessed June 4, 2012

  17. T. Ohno, K. Nozaki, M. Haga, Inorg. Chem. 31, 548–555 (1992)

    Article  CAS  Google Scholar 

  18. A. Yoshimura, K. Nozaki, N. Ikeda, T. Ohno, J. Phys. Chem. 100, 1630–1637 (1996)

    Article  CAS  Google Scholar 

  19. J.J.H. McDowell, Acta. Cryst. B32, 5–10 (1976)

    CAS  Google Scholar 

  20. C.L. Klein, J.M. Conrad III, S.A. Morris, Acta. Cryst. C41, 1202–1204 (1985)

    CAS  Google Scholar 

  21. T. Okamoto, M. Kuratsu, M. Kozaki, K. Hirotsu, A. Ichimura, T. Matsushita, K. Okada, Org. Lett. 6, 3493–3496 (2004)

    Article  CAS  Google Scholar 

  22. A.Z. Weller, Phys. Chem. Neue Folge 133, 93–98 (1982)

    Article  CAS  Google Scholar 

  23. M. Lor, L. Viaene, R. Pilot, E. Fron, S. Jordens, G. Schweitzer, T. Weil, K. Müllen, J.W. Verhoeven, M. Van der Auweraer, F.C. De Schryver, J. Phys. Chem. B 108, 10721–10731 (2004)

    Article  CAS  Google Scholar 

  24. H. Oevering, M.N. Paddon-Row, M. Heppener, A.M. Oliver, E. Cotsaris, J.W. Verhoeven, N.S. Hush, J. Am. Chem. Soc. 109, 3258–3269 (1987)

    Article  CAS  Google Scholar 

  25. A.L. Thompson, T.-S. Ahn, K.R.J. Thomas, S. Thayumanavan, T. Martínez, C.J. Bardeen, J. Am. Chem. Soc. 127, 16348–16349 (2005)

    Article  CAS  Google Scholar 

  26. A.B. Ricks, G.C. Solomon, M.T. Colvin, A.M. Scott, K. Chen, M.A. Ratner, M.R. Wasielewski, J. Am. Chem. Soc. 132, 15427–15434 (2010)

    Article  CAS  Google Scholar 

  27. G.L. Closs, M.D.E. Forbes, J.R. Jr. Norris, J. Phys. Chem. 91, 3592–3599 (1987)

  28. P.J. Hore, in Advanced EPR in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 405–440

  29. Z.E.X. Dance, Q. Mi, D.W. McCamant, M.J. Ahrens, M.A. Ratner, M.R. Wasielewski, J. Phys. Chem. B 110, 25163–25173 (2006)

    Article  CAS  Google Scholar 

  30. T. Miura, A.M. Scott, M.R. Wasielewski, J. Phys. Chem. C 114, 20370–20379 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid: for Scientific Research (B) (no. 2350066 for K.O.), for Young Scientists (B) (no. 22750043 for S.S.), and for JSPS Fellows (no. 238419 for R.S.) from the Japan Society for Promotion of Science (JSPS). S.S. is also grateful for financial support from the Kansai Research Foundation for Technology Promotion and the Association for the Progress of New Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koichi Nozaki, Noriaki Ikeda or Keiji Okada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimura, R., Suzuki, S., Kozaki, M. et al. Photoinduced charge separation of phenothiazine–platinum–naphthalene diimide triads linked by twisted phenylene bridges. Res Chem Intermed 39, 185–204 (2013). https://doi.org/10.1007/s11164-012-0642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0642-6

Keywords

Navigation