Skip to main content
Log in

Synthesis and photoluminescent analyses of ternary terbium(III) Tris-β-diketonate complexes: a systematic exploration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Four terbium(III) ternary complexes, namely [Tb(TFPB)3(topo)2] (N1), [Tb(TFPB)3(bipy)] (N2), [Tb(TFPB)3(phenan)] (N3) and [Tb(TFPB)3(neocup)] (N4), comprising 4,4,4-trifluoro-1-phenyl-1,3-butanedione (TFPB) and nitrogen and oxygen donors, have been successfully synthesized and subjected to detailed structural characterization. The analyses include elemental analysis, FTIR spectroscopy, thermogravimetric studies and 1H-NMR spectroscopy. IR studies presented vibrational peaks in 1470 to 1500 cm−1 region which are characteristic feature of the complexation of Ln(III) ion to 1,3-diketones. NMR analysis presented high dipolar paramagnetic shift from 114.7 to − 199.0 ppm due to TFPB and neutral ligand, respectively. Band gap values suggest the potential use of these complexes in semiconductor devices. The photoluminescent properties of these complexes have been examined in their solid states, revealing the impact of neutral ligands on the photoluminescent properties of Tb(III) ion. A thorough investigation into the energy transfer process is undertaken, establishing correlation between luminescence of the acceptor (terbium(III) ion) and the triplet state energy of the donor (ligands). Out of the set of complexes under examination, the luminescence intensity from complex N2 stands out as the most intense, followed by N4, N3 and N1. Additionally, the CIE color space coordinates for these complexes are precisely calculated and presented. Beyond their visible green emission, thermal patterns associated with these synthesized complexes have also been comprehensively explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors affirm that the information/data of this research article is available inside the article.

References

  1. L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. (2010). https://doi.org/10.1016/j.ccr.2009.07.025

    Article  Google Scholar 

  2. J.C. Bünzli, Chem. Rev. (2010). https://doi.org/10.1021/cr900362e

    Article  PubMed  Google Scholar 

  3. I. Gupta, D. Singh, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, J. Mol. Struct. (2023). https://doi.org/10.1016/j.molstruc.2022.134199

    Article  Google Scholar 

  4. P. Kumar, S. Singh, I. Gupta, K. Nehra, V. Kumar, D. Singh, Mater. Chem. Phys. (2023). https://doi.org/10.1016/j.matchemphys.2022.127035

    Article  Google Scholar 

  5. K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev. (2002). https://doi.org/10.1021/cr010309g

    Article  PubMed  Google Scholar 

  6. B. Yan, R.S.C. Adv, R.S.C. Adv. 2(25), 9304–9324 (2012)

    CAS  Google Scholar 

  7. I. Gupta, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, D. Singh, Curr. App. Phys. (2022). https://doi.org/10.1016/j.cap.2022.08.011

    Article  Google Scholar 

  8. E. Brunet, O. Juanes, J.C. Rodriguez-Ubis, Curr. Chem. Bio. (2007). https://doi.org/10.2174/187231307779814039

    Article  Google Scholar 

  9. A. Hooda, D. Singh, A. Dalal, S. Malik, S. Redhu, K. Jakhar, S. Kumar, R.S. Malik, P. Kumar, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.111018

    Article  Google Scholar 

  10. Z.A. Taha, A.M. Ajlouni, A.K. Hijazi, N.A. Al-Rawashdeh, K.A. Al-Hassan, Y.A. Al-Haj, M.A. Ebqa, A.Y. Altalafha, J. Lumin. 16, 229–238 (2015)

    Article  Google Scholar 

  11. S.I. Weissman, J. Chem. Phys. (1942). https://doi.org/10.1063/1.1723709

    Article  Google Scholar 

  12. K. Nehra, A. Dalal, A. Hooda, K. Jakhar, D. Singh, S. Kumar, Inorganica Chim. Acta. (2022). https://doi.org/10.1016/j.ica.2022.120958

    Article  Google Scholar 

  13. A. Dalal, K. Nehra, A. Hooda, S. Singh, D. Singh, S. Kumar, J. Fluoresc. (2022). https://doi.org/10.1007/s10895-022-02920-7

    Article  PubMed  Google Scholar 

  14. P. Cantero-López, J. Santoyo-Flores, A. Vega, A. Carreño, J.A. Fuentes, A. Ramirez-Osorio, A. Ortiz, L.A. Illicachi, J. Sánchez, A.F. Olea, D. Páez-Hernández, Dalton Trans. (2021). https://doi.org/10.1039/D1DT02037D

    Article  PubMed  Google Scholar 

  15. L. Li, J. Gou, D.F. Wu, Y.J. Wang, Y.Y. Duan, H.H. Chen, H.L. Gao, J.Z. Cui, New. J. Chem. (2020). https://doi.org/10.1039/D0NJ00164C

    Article  Google Scholar 

  16. A. Hooda, A. Dalal, K. Nehra, P. Kumar, D. Singh, R.S. Malik, S. Kumar, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.119272

    Article  Google Scholar 

  17. K. Binnemans, Handbook on the physics and chemistry of rare earths 35(5), 107–272 (2005)

    Article  Google Scholar 

  18. A. Dalal, K. Nehra, A. Hooda, S. Singh, S. Bhagwan, D. Singh, S. Kumar, Inorg. Chem. Comm. (2022). https://doi.org/10.1016/j.inoche.2022.109399

    Article  Google Scholar 

  19. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, A.P. Simantilleke, S. Kumar, I. Singh, Rare Met. (2021). https://doi.org/10.1007/s12598-020-01543-w

    Article  Google Scholar 

  20. K. Nehra, A. Dalal, A. Hooda, D. Singh, S. Kumar, Inorg. Chem. Comm. (2022). https://doi.org/10.1016/j.inoche.2022.109361

    Article  Google Scholar 

  21. K. Nehra, A. Dalal, A. Hooda, S. Singh, D. Singh, S. Kumar, Inorganica Chim. Acta. (2022). https://doi.org/10.1016/j.ica.2022.120860

    Article  Google Scholar 

  22. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Ceram. Inter. (2021). https://doi.org/10.1016/j.ceramint.2021.03.308

    Article  Google Scholar 

  23. A. Hooda, A. Dalal, K. Nehra, P. Kumar, D. Singh, S. Kumar, R.S. Malik, R. Kumar, P. Kumar, Luminescence 37(11), 1921–1931 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. A. Dalal, K. Nehra, A. Hooda, S. Singh, D. Singh, S. Kumar, J. Fluoresc. (2022). https://doi.org/10.1007/s10895-022-02920-7

    Article  PubMed  Google Scholar 

  25. K. Nehra, A. Dalal, A. Hooda, R.K. Saini, D. Singh, S. Kumar, Polyhedron 217, 115730 (2022)

    Article  CAS  Google Scholar 

  26. G. Qian-Ling, Z. Wen-Xiang, G. Rong, Y. Xi, W. Ru-Ji, Chin. J. Chem. (2003). https://doi.org/10.1002/cjoc.20030210225

    Article  Google Scholar 

  27. A.M. Fedoseev, M.S. Grigoriev, I.A. Charushnikova, N.A. Budantseva, N.M. Stanetskaya, V.S. Tyurin, Inorg. Chem. (2021). https://doi.org/10.1021/acs.inorgchem.0c03315

    Article  PubMed  Google Scholar 

  28. A. Hooda, A. Dalal, K. Nehra, S. Singh, S. Kumar, D. Singh, J. Fluoresc. (2022). https://doi.org/10.1007/s10895-022-02951-0

    Article  PubMed  Google Scholar 

  29. S. Ahmad Bhat, K. Iftikhar, Photochem Photobiol. 97(4), 688–699 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. A. Dalal, K. Nehra, A. Hooda, D. Singh, S. Kumar, R.S. Malik, Luminescence 37(8), 1309–1320 (2022)

    Article  CAS  PubMed  Google Scholar 

  31. A. Dalal, A. Hooda, K. Nehra, D. Singh, S. Kumar, R.S. Malik, P. Kumar, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.133343

    Article  Google Scholar 

  32. A. Hooda, A. Dalal, K. Nehra, D. Singh, S. Kumar, R.S. Malik, P. Kumar, Chem. Phys. Lett. (2022). https://doi.org/10.1016/j.cplett.2022.139495

    Article  Google Scholar 

  33. Y. Li, C. Yu, Y. Wang, T. Sun, K. Wang, S. Xian, Y. Liu, Polyhedron 246, 116666 (2023)

    Article  CAS  Google Scholar 

  34. A. Hooda, K. Nehra, A. Dalal, S. Singh, R.K. Saini, S. Kumar, D. Singh, Inorganica Chim. Acta. (2022). https://doi.org/10.1016/j.ica.2022.120881

    Article  Google Scholar 

  35. D. Singh, S. Bhagwan, A. Dalal, K. Nehra, R.K. Saini, K. Singh, S. Kumar, I. Singh, J. Lumin. (2020). https://doi.org/10.1016/j.jlumin.2020.117255

    Article  Google Scholar 

  36. A. Hooda, K. Nehra, A. Dalal, S. Bhagwan, I. Gupta, D. Singh, S. Kumar, J. Fluoresc. (2022). https://doi.org/10.1007/s10895-022-02956-9

    Article  PubMed  Google Scholar 

  37. A. Dalal, K. Nehra, A. Hooda, D. Singh, R.S. Malik, S. Kumar, Optik (2021). https://doi.org/10.1016/j.ijleo.2021.167942

    Article  Google Scholar 

  38. K. Nehra, A. Dalal, A. Hooda, P. Kumar, D. Singh, S. Kumar, R.S. Malik, P. Kumar, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.119032

    Article  Google Scholar 

  39. A. Dalal, K. Nehra, A. Hooda, D. Singh, K. Jakhar, S. Kumar, Inorg. Chem. Commun. (2022). https://doi.org/10.1016/j.inoche.2022.109349

    Article  Google Scholar 

  40. Ł. Haryński, A. Olejnik, K. Grochowska, K. Siuzdak, Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.112205

    Article  Google Scholar 

  41. S. Singh, D. Singh, Rare Met. (2021). https://doi.org/10.1007/s12598-020-01585-0

    Article  Google Scholar 

  42. A. Hooda, D. Singh, K. Nehra, A. Dalal, S. Kumar, R.S. Malik, B. Rathi, P. Kumar, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.110583

    Article  Google Scholar 

  43. P. Kumar, S. Singh, I. Gupta, V. Kumar, D. Singh, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.133362

    Article  PubMed  PubMed Central  Google Scholar 

  44. Y. Hasegawa, Y. Kitagawa, T. Nakanishi, N.P.G. Asia Mater, N.P.G. Asia Mater. 10(4), 52–70 (2018)

    Article  CAS  Google Scholar 

  45. L.F. Marques, A. Cuin, G.S. De Carvalho, M.V. Dos Santos, S.J. Ribeiro, F.C. Machado, Inorganica Chim. Acta. (2016). https://doi.org/10.1016/j.ica.2015.11.009

    Article  Google Scholar 

  46. D. Singh, K. Nehra, R.K. Saini, A. Dalal, S. Bhagwan, K. Singh, A.P. Simantilleke, S. Kumar, Optik 206, 164338 (2020)

    Article  CAS  Google Scholar 

  47. P. Kumar, S. Singh, I. Gupta, V. Kumar, D. Singh, Optik 267, 169709 (2022)

    Article  CAS  Google Scholar 

  48. I. Gupta, S. Singh, S. Bhagwan, D. Singh, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.308

    Article  Google Scholar 

  49. I. Gupta, D. Singh, S. Singh, P. Kumar, S. Bhagwan, V. Kumar, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.119327

    Article  Google Scholar 

  50. A.B. Ganaie, K. Iftikhar, J. Photochem Photobiol, A. Chem, J. Photochem Photobiol A. Chem 425, 113715 (2022)

    Article  Google Scholar 

  51. W.A. Dar, Z. Ahmed, K. Iftikhar, J. Photochem, Photobiol Chem. (2018). https://doi.org/10.1016/j.jphotochem.2017.12.017

    Article  Google Scholar 

  52. A. Hooda, D. Singh, K. Nehra, S. Dalal, V. Aggarwal, S. Kumar, R.S. Malik, P. Kumar, Inorganica Chim. Acta. (2023). https://doi.org/10.1016/j.ica.2023.121674

    Article  Google Scholar 

  53. K. Nehra, A. Dalal, A. Hooda, S. Singh, D. Singh, S. Kumar, R.S. Malik, R. Kumar, P. Kumar, Inorganica Chim. Acta. (2022). https://doi.org/10.1016/j.ica.2022.121007

    Article  Google Scholar 

  54. P. Bag, C.K. Rastogi, S. Biswas, S. Sivakumar, V. Mereacre, V. Chandrasekhar, Dalton Trans. (2015). https://doi.org/10.1039/C4DT03429E

    Article  PubMed  Google Scholar 

  55. V. Tanwar, S. Singh, I. Gupta, P. Kumar, H. Kumar, B. Mari, D. Singh, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131802

    Article  Google Scholar 

  56. P. Kumar, S. Singh, I. Gupta, A. Hooda, V. Kumar, D. Singh, J. Mol. Struct. (2023). https://doi.org/10.1016/j.molstruc.2022.134074

    Article  Google Scholar 

  57. S. Westland, Q. Pan, S. Lee, Color. Technol. (2017). https://doi.org/10.1111/cote.12289

    Article  Google Scholar 

  58. O.E. Zheleznikova, S.V. Prytkov, A.M. Kokinov, J. Mech. Contin Math. Sci. spl. (2020). https://doi.org/10.26782/jmcms.spl.8/2020.04.00010

    Article  Google Scholar 

  59. S.S. Skourtis, C. Liu, P. Antoniou, A.M. Virshup, D.N. Beratan, Proc. Natl. Acad. Sci. 113(29), 8115–8120 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. P. Kumar, S. Singh, I. Gupta, K. Nehra, V. Kumar, D. Singh, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.119338

    Article  Google Scholar 

  61. J. Dahiya, A. Hooda, A. Agarwal, S. Khasa, Opt. Mater. (2022). https://doi.org/10.1016/j.optmat.2022.113162

    Article  Google Scholar 

  62. I. Gupta, P. Kumar, S. Singh, S. Bhagwan, V. Kumar, D. Singh, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.133567

    Article  PubMed  PubMed Central  Google Scholar 

  63. T. Förster, Compr. Biochem. 43(3), 617–625 (1967)

    Google Scholar 

  64. Q. Sun, P. Yan, W. Niu, W. Chu, X. Yao, G. An, G. Li, R.S.C. Adv. (2015). https://doi.org/10.1039/C5RA12954K

    Article  Google Scholar 

  65. O.V. Kotova, S.V. Eliseeva, A.A. Volosnikov, V.A. Oleinikov, L.S. Lepnev, A.G. Vitukhnovskii, N.P. Kuz’mina, Russ J. Coord. Chem. (2006). https://doi.org/10.1134/S1070328406120086

    Article  Google Scholar 

  66. A. Chauhan, R. Langyan, J. Chem. Sci. (2020). https://doi.org/10.1007/s12039-020-01790-5

    Article  Google Scholar 

  67. A. Dalal, K. Nehra, A. Hooda, D. Singh, S. Kumar, R.S. Malik, J. Lumin. (2022). https://doi.org/10.1016/j.jlumin.2022.118873

    Article  Google Scholar 

  68. S. Dang, L.N. Sun, S.Y. Song, H.J. Zhang, G.L. Zheng, Y.F. Bi, H.D. Guo, Z.Y. Guo, J. Feng, Inorg. Chem. Commun. (2008). https://doi.org/10.1016/j.inoche.2008.02.001

    Article  Google Scholar 

  69. K. Nehra, A. Dalal, A. Hooda, S. Bhagwan, R.K. Saini, B. Mari, S. Kumar, D. Singh, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131531

    Article  Google Scholar 

  70. S. Dalal, D. Singh, A. Dalal, S. Kumar, R.S. Malik, P. Kumar, J. Sindhu, J. Mol. Struct. (2024). https://doi.org/10.1016/j.molstruc.2024.137909

    Article  Google Scholar 

  71. C. Léger, P. Bertrand, Chem. Rev. (2008). https://doi.org/10.1021/cr0680742

    Article  PubMed  Google Scholar 

  72. Z. Ahmed, K. Iftikhar, Polyhedron (2015). https://doi.org/10.1016/j.poly.2014.08.064

    Article  Google Scholar 

  73. A. Hooda, K. Nehra, A. Dalal, S. Singh, R.K. Saini, S. Kumar, D. Singh, J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.132848

    Article  Google Scholar 

  74. P. Sharma, P. Sarma, A. Frontera, S. Hussain, A.K. Verma, M.K. Bhattacharyya, Inorganica Chim. Acta. (2021). https://doi.org/10.1016/j.ica.2020.120082

    Article  Google Scholar 

  75. S. Shahbazi, S.A. Stratz, J.D. Auxier, D.E. Hanson, M.L. Marsh, H.L. Hall, J. Radioanal Nucl. Chem. (2017). https://doi.org/10.1007/s10967-016-5005-0

    Article  PubMed  Google Scholar 

  76. A. Hooda, D. Singh, A. Dalal, K. Nehra, S. Kumar, R.S. Malik, R. Kumar, P. Kumar, RSC Adv. (2023). https://doi.org/10.1039/D3RA00214D

    Article  PubMed  PubMed Central  Google Scholar 

  77. A. Hooda, K. Nehra, A. Dalal, S. Singh, S. Bhagwan, K. Jakhar, D. Singh, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-08089-w

    Article  Google Scholar 

Download references

Acknowledgements

Vandana Aggarwal is thankful to UGC-New Delhi for providing JRF [221610012377].

Author information

Authors and Affiliations

Authors

Contributions

Vandana Aggarwal  = Data curation, Writing - original draft; Devender Singh  = Writing - review & editing and Supervision; Anjli Hooda  = Project administration; Kapeesha Nehra =  Formal analysis; Komal Jakhar  = Visualization; Sumit Kumar  = Investigation; Rajender Singh Malik  = Resources and Validation; Parvin Kumar  = Software.

Corresponding author

Correspondence to Devender Singh.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not involve any study performed on animals or human by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggarwal, V., Singh, D., Hooda, A. et al. Synthesis and photoluminescent analyses of ternary terbium(III) Tris-β-diketonate complexes: a systematic exploration. J Mater Sci: Mater Electron 35, 568 (2024). https://doi.org/10.1007/s10854-024-12314-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12314-z

Navigation