Skip to main content

Advertisement

Log in

Links between behaviour and metabolic physiology in fishes in the Anthropocene

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Changes in behaviour and physiology are the primary responses of fishes to anthropogenic impacts such as climate change and over-fishing. Behavioural changes (such as a shift in distribution or changes in phenology) can ensure that a species remains in an environment suited for its optimal physiological performance. However, if fishes are unable to shift their distribution, they are reliant on physiological acclimatization (either by broadening their metabolic curves to tolerate a range of stressors, or by shifting their metabolic curves to maximize their performance at extreme stressors). However, since there are links between fish physiology and behaviour, changes to either of these trait groups may have reciprocal interactions. This paper reviews the current knowledge of the links between the behaviour and aerobic metabolic physiology of fishes, discusses these in the context of exploitation and climate change and makes recommendations for future research needs. The review revealed that our understanding of the links between fish behaviour and metabolic physiology is rudimentary. However, both are hypothesized to be linked to stress responses along the hypothalamic pituitary axis. The link between metabolic physiological capacity and behaviour is particularly important as both determine the response of an individual to a changing climate and are under selection by fisheries. While, it appears that all types of capture fisheries are likely to reduce the adaptive potential of fished populations to climate stressors, angling, which is primarily associated with recreational fishing, may induce the separation of natural populations by removing individuals with bold behavioural traits and potentially the physiological traits required to facilitate behavioural change. Future research should focus on assessing how the links between metabolic physiological capacity and behaviour influence catchability, the response to climate change drivers and post-release recovery. The plasticity of phenotypic traits should be examined under a range of stressors of differing intensity, in several species and life history stages. Future studies should also assess plasticity (fission or fusion) in the phenotypic structuring of social hierarchy and how this influences habitat selection. Ultimately, to fully understand how physiology is influenced by the selective processes driven by fisheries, long-term monitoring of the physiological and behavioural structure of fished populations, their fitness and catch rates are required. This will provide information that can be used by managers to retain behavioural and physiological trait diversity, which will be necessary to improve the resilience of fished populations to the impacts of climate change and safeguard the provision of resources for future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The material is available in the manuscript.

References

  • Abeliovich A, Paylor R, Chen C, Kim JJ, Wehner JM, Tonegawa S (1993) PKCγ mutant mice exhibit mild deficits in spatial and contextual learning. Cell 75:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Almeida JA, Barreto RE, Novelli EL, Castro FJ, Moron SE (2009) Oxidative stress biomarkers and aggressive behavior in fish exposed to aquatic cadmium contamination. Neotrop Ichthyol 7:103–108

    Article  Google Scholar 

  • Alós J, Palmer M, Arlinghaus R (2012) Consistent selection towards low activity phenotypes when catchability depends on encounters among human predators and fish. PloS one 7:e48030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alton LA, Portugal SJ, White CR (2013) Balancing the competing requirements of air-breathing and display behaviour during male–male interactions in Siamese fighting fish Betta splendens. Comp Biochem Physiol a Mol Integr Physiol 164:363–367

    Article  CAS  PubMed  Google Scholar 

  • Andersen KH, Beyer JE (2015) Size structure, not metabolic scaling rules, determines fisheries reference points. Fish Fish 16:1–22

    Article  Google Scholar 

  • Archard GA, Earley RL, Hanninen AF, Braithwaite VA (2012) Correlated behaviour and stress physiology in fish exposed to different levels of predation pressure. Funct Ecol 26:637–645

    Article  Google Scholar 

  • Arlinghaus R, Mehner T, Cowx IG (2002) Reconciling traditional inland fisheries management and sustainability in industrialized countries, with emphasis on Europe. Fish Fish 3:261–316

    Article  Google Scholar 

  • Arlinghaus R, Klefoth T, Cooke SJ, Gingerich A, Suski C (2009) Physiological and behavioural consequences of catch-and-release angling on northern pike (Esox lucius L.). Fish Res 97:223–233

    Article  Google Scholar 

  • Arlinghaus R, Cooke SJ, Potts W (2013) Towards resilient recreational fisheries on a global scale through improved understanding of fish and fisher behaviour. Fish Manag Ecol 20:91–98

    Article  Google Scholar 

  • Arlinghaus R, Laskowski KL, Alós J, Klefoth T, Monk CT, Nakayama S, Schröder A (2017) Passive gear-induced timidity syndrome in wild fish populations and its potential ecological and managerial implications. Fish Fish 18:360–373

    Article  Google Scholar 

  • Aubin-Horth N, Deschênes M, Cloutier S (2012) Natural variation in the molecular stress network correlates with a behavioural syndrome. Horm Behav 61:140–146

    Article  CAS  PubMed  Google Scholar 

  • Auer SK, Salin K, Metcalfe NB (2015) Aerobic scope explains individual variation in feeding capacity. Biol Let 11:20150793

    Article  CAS  Google Scholar 

  • Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Mental Health 22:153–160

    Article  Google Scholar 

  • Baran NM, Streelman TJ (2020) Ecotype differences in aggression, neural activity, and behaviorally relevant gene expression in cichlid fish. Genes Brain Behav 19:e12657

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrett L, Blumstein DT, Clutton-Brock TH, Kappeler PM (2013) Taking note of Tinbergen, or: the promise of a biology of behaviour. Philos Trans R Soc b Biol Sci 368:20120352

    Article  Google Scholar 

  • Beever EA, Hall LE, Varner J, Loosen AE, Dunham JB, Gahl MK, Smith FA, Lawler JJ (2017) Behavioral flexibility as a mechanism for coping with climate change. Front Ecol Environ 15:299–308

    Article  Google Scholar 

  • Behrens JW, von Friesen LW, Brodin T, Ericsson P, Hirsch PE, Persson A, Sundelin A, van Deurs M, Nilsson PA (2020) Personality-and size-related metabolic performance in invasive round goby (Neogobius melanostomus). Physiol Behav 215:112777

    Article  CAS  PubMed  Google Scholar 

  • Bell AM (2007) Evolutionary biology: animal personalities. Nature 447:539–540

    Article  CAS  PubMed  Google Scholar 

  • Bell AM, Sih A (2007) Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol Lett 10:828–834

    Article  PubMed  Google Scholar 

  • Binder TR, Wilson AD, Wilson SM, Suski CD, Godin JGJ, Cooke SJ (2016) Is there a pace-of-life syndrome linking boldness and metabolic capacity for locomotion in bluegill sunfish? Anim Behav 121:175–183

    Article  Google Scholar 

  • Biro PA, Post JR (2008) Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proc Natl Acad Sci 105:2919–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biro PA, Stamps JA (2010) Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol Evol 25:653–659

    Article  PubMed  Google Scholar 

  • Biro PA, Beckmann C, Stamps JA (2010) Small within-day increases in temperature affects boldness and alters personality in coral reef fish. Proc R Soc b Biol Sci 277:71–77

    Article  Google Scholar 

  • Biro PA, Garland T Jr, Beckmann C, Ujvari B, Thomas F, Post JR (2018) Metabolic scope as a proximate constraint on individual behavioral variation: effects on personality, plasticity, and predictability. Am Nat 192:142–154

    Article  PubMed  Google Scholar 

  • Brander K (2010) Impacts of climate change on fisheries. J Mar Syst 79:389–402

    Article  Google Scholar 

  • Careau V, Thomas D, Humphries MM, Réale D (2008) Energy metabolism and animal personality. Oikos 117:641–653

    Article  Google Scholar 

  • Careau V, Mariette MM, Crino O, Buttemer WA, Buchanan KL (2020) Repeatability of behavior and physiology: no impact of reproductive investment. Gen Compar Endocrinol 290:113403

    Article  CAS  Google Scholar 

  • Cattano C, Claudet J, Domenici P, Milazzo M (2018) Living in a high CO2 world: a global Meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol Monogr 88:320–335

    Article  Google Scholar 

  • Chabot D, McKenzie DJ, Craig JF (2016) Metabolic rate in fishes: definitions, methods and significance for conservation physiology. J Fish Biol 88:1–9

    Article  CAS  PubMed  Google Scholar 

  • Chappell MA, Garland T, Rezende EL, Gomes FR (2004) Voluntary running in deer mice: speed, distance, energy costs and temperature effects. J Exp Biol 207:3839–3854

    Article  PubMed  Google Scholar 

  • Chen C, Rainnie DG, Greene RW, Tonegawa S (1994) Abnormal fear response and aggressive behavior in mutant mice deficient for alpha-calcium-calmodulin kinase II. Science 266:291–294

    Article  CAS  PubMed  Google Scholar 

  • Childs AR, Cowley PD, Næsje TF, Booth AJ, Potts WM, Thorstad EB, Økland F (2008) Do environmental factors influence the movement of estuarine fish? A case study using acoustic telemetry. Estuar Coast Shelf Sci 78:227–236

    Article  Google Scholar 

  • Chown SL, Hoffmann AA, Kristensen TN, Angilletta MJ Jr, Stenseth NC, Pertoldi C (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15

    Article  Google Scholar 

  • Claireaux G, Webber D, Kerr S, Boutilier R (1995) Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating temperature conditions. J Exp Biol 198:49–60

    Article  CAS  PubMed  Google Scholar 

  • Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782

    Article  PubMed  Google Scholar 

  • Clark TD, Messmer V, Tobin AJ, Hoey AS, Pratchett MS (2017) Rising temperatures may drive fishing-induced selection of low-performance phenotypes. Sci Rep 7:1–1

    Article  CAS  Google Scholar 

  • Clarke RD (1992) Effects of microhabitat and metabolic, rate on food intake, growth and fecundity of two competing coral reef fishes. Coral Reefs 11:199–205

    Article  Google Scholar 

  • Clarke A, Johnston NM (2002) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Cockrem J (2007) Stress, corticosterone responses and avian personalities. J Ornithol 148:169–178

    Article  Google Scholar 

  • Coleman K, Wilson DS (1998) Shyness and boldness in pumpkinseed sunfish: individual differences are context-specific. Anim Behav 56:927–936

    Article  CAS  PubMed  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK (eds) Climate change 2013: the physical science basis. Cambridge University Press Cambridge, United Kingdom

    Google Scholar 

  • Cooke SJ, Suski CD (2005) Do we need species specific guidelines for catch-and-release recreational angling to effectively conserve diverse fishery resources? Biodivers Conserv 14:1195–1209

    Article  Google Scholar 

  • Cooke SJ, Suski CD, Ostrand KG, Wahl DH, Philipp DP (2007) Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish. Physiol Biochem Zool 80:480–490

    Article  PubMed  Google Scholar 

  • Cooke SJ, Brownscombe JW, Raby GD, Broell F, Hinch SG, Clark TD, Semmens JM (2016) Remote bioenergetics measurements in wildfish: opportunities and challenges. Compar Biochem Physiol Part A Mol Integr Physiol. https://doi.org/10.1016/j.cbpa.2016.03.022

    Article  Google Scholar 

  • Cooke SJ, Twardek WM, Reid AJ, Lennox RJ, Danylchuk SC, Brownscombe JW, Danylchuk AJ (2019) Searching for responsible and sustainable recreational fisheries in the Anthropocene. J Fish Biol. https://doi.org/10.1111/jfb.13935

    Article  PubMed  Google Scholar 

  • Crocker CE, Cech JJ Jr (1997) Effects of environmental hypoxia on oxygen consumption rate and swimming activity in juvenile white sturgeon, Acipenser transmontanus, in relation to temperature and life intervals. Environ Biol Fishes 50:383–389

    Article  Google Scholar 

  • Croft DP, Krause J, James R (2004) Social networks in the guppy (Poecilia reticulata). Proc R Soc B 271:516-S519

    Article  Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (1998) Aggression and growth depression in juvenile salmon – the consequences of variation in metabolic rate. J Fish Biol 52:1026–1037

    Article  Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (1999) Competitive asymmetries in territorial juvenile Atlantic salmon, Salmo salar. Oikos 86:479–486

    Article  Google Scholar 

  • Cutts CJ, Adams CE, Campbell A (2001) Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 58:961–968

    Article  Google Scholar 

  • Danylchuk SE, Danylchuk AJ, Cooke SJ, Goldberg TL, Koppelman J, Philipp DP (2007) Effects of recreational angling on the post-release behavior and predation of bonefish (Albula vulpes): the role of equilibrium status at the time of release. J Exp Mar Biol Ecol 346:127–133

    Article  Google Scholar 

  • Dijkstra PD, Seehausen O, Metcalfe NB (2013) Metabolic differentiation in an incipient species pair of cichlid fish. J Fish Biol 82:1975–1989

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra PD, Pierotti ME, Seehausen O, Metcalfe NB (2016) Metabolism, oxidative stress and territorial behaviour in a female colour polymorphic cichlid fish. Behav Ecol Sociobiol 70:99–109

    Article  Google Scholar 

  • Donelson JM, Munday PL, McCormick MI, Pitcher CR (2012) Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2:30

    Article  Google Scholar 

  • Donelson JM, Sunday JM, Figueira WF, Gaitán-Espitia JD, Hobday AJ, Johnson CR, Leis JM, Ling SD, Marshall D, Pandolfi JM, Pecl G (2019) Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc B 374:20180186

    Article  Google Scholar 

  • Dorfman D (2005) Aggression and oxygen uptake in Siamese fighting fish. Bull New Jersey Acad Sci 50:11–14

    Google Scholar 

  • Duncan MI, Bates AE, James NC, Potts WM (2019) Exploitation may influence the climate resilience of fish populations through removing high performance metabolic phenotypes. Sci Rep 9:1–10

    Article  Google Scholar 

  • Dwyer GK, Stoffels RJ, Pridmore PA (2014) Morphology, metabolism, and behavior: responses of three fishes with different lifestyles to acute hypoxia. Freshw Biol 59:819–831

    Article  CAS  Google Scholar 

  • Eliason EJ, Farrell AP (2016) Oxygen uptake in Pacific salmon Oncorhynchus spp.: when ecology and physiology meet. J Fish Biol 88:359–388

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agricultural Organization of the United Nations) (2012) Technical guidelines for responsible fisheries: recreational fisheries. Food and Agriculture Organization of the United Nations, Rome, p 176

    Google Scholar 

  • Finstad AG, Forseth T, Ugedal O, Naesje TF (2007) Metabolic rate, behaviour and winter performance in juvenile Atlantic salmon. Funct Ecol 21:905–912

    Article  Google Scholar 

  • Fischer P (2000) An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Can J Fish Aquat Sci 57:2336–2344

    Article  Google Scholar 

  • Forstner H, Wieser W (1990) Patterns of routine swimming and metabolic rate in juvenile cyprinids at three temperatures: analysis with a respirometer-activity-monitoring system. J Comp Physiol B 160:71–76

    Article  Google Scholar 

  • Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD (2019) Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2018.0174

    Article  Google Scholar 

  • Freitas C, Olsen EM, Moland E, Ciannelli L, Knutsen H (2015) Behavioral responses of Atlantic cod to sea temperature changes. Ecol Evol 5:2070–2083

    Article  PubMed  PubMed Central  Google Scholar 

  • Gale MK, Hinch SG, Donaldson MR (2013) The role of temperature in the capture and release of fish. Fish Fish 14:1–33

    Article  Google Scholar 

  • Gingerich AJ, Cooke SJ, Hanson KC, Donaldson MR, Hasler CT, Suski CD, Arlinghaus R (2007) Evaluation of the interactive effects of air exposure duration and water temperature on the condition and survival of angled and released fish. Fish Res 86:169–178

    Article  Google Scholar 

  • Grantner A, Taborsky M (1998) The metabolic rates associated with resting, and with the performance of agonistic, submissive and digging behaviours in the cichlid fish Neolamprologus pulcher (Pisces: Cichlidae). J Comp Physiol B 168:427–433

    Article  Google Scholar 

  • Griffiths MH (2000) Long-term trends in catch and effort of commercial linefish off South Africa’s Cape Province: snapshots of the 20th century. S Afr J Mar Sci 22:81–110

    Article  Google Scholar 

  • Haddaway NR, Woodcock P, Macura B, Collins A (2015) Making literature reviews more reliable through application of lessons from systematic reviews. Conserv Biol 29:1596–1605

    Article  CAS  PubMed  Google Scholar 

  • Halsey LG, Killen SS, Clark TD (2018) Exploring key issues of aerobic scope interpretation in ectotherms: absolute versus factorial. Rev Fish Biol Fish Sci 28:405–415

    Article  Google Scholar 

  • Hansen MJ, Ligocki IY, Zillig KE, Steel AE, Todgham AE, Fangue NA (2020) Risk-taking and locomotion in foraging threespine sticklebacks (Gasterosteus aculeatus): the effect of nutritional stress is dependent on social context. Behav Ecol Sociobiol 74:1–12

    Article  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tormanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    Article  PubMed  Google Scholar 

  • Harrison PM, Gutowsky LF, Martins EG, Patterson DA, Cooke SJ, Power M (2015) Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav Ecol 26:483–492

    Article  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische analyse der zeit, reihenfolgen und vorzeichenauswertung bei der bewegungsperzeption des Rfisselk~ifers Chlorophanus. Naturforsch 11b:513–524

    Article  Google Scholar 

  • Heinrich B, Bartholomew GA (1979) Roles of endothenny and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol Zool 52:484–496

    Article  Google Scholar 

  • Herrera M, Castanheira MF, Conceição LE, Martins CI (2014) Linking risk taking and the behavioral and metabolic responses to confinement stress in gilthead seabream Sparus aurata. Appl Anim Behav Sci 155:101–108

    Article  Google Scholar 

  • Hessenauer JM, Vokoun JC, Suski CD, Davis J, Jacobs R, O’Donnell E (2015) Differences in the metabolic rates of exploited and unexploited fish populations: a signature of recreational fisheries induced evolution? PLoS One 10:e0128336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, Fabry VJ, Jung S (2014) The ocean. In: Barros VR, Field CB, Dokken DJ (eds) Climate change 2014: impacts, adaptation and vulnerability: Part B regional aspects—contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1655–1731

    Google Scholar 

  • Hollins JPW, Thambithurai D, Van Leeuwen TE, Allan B, Koeck B, Bailey D, Killen SS (2019) Shoal familiarity modulates effects of individual metabolism on vulnerability to capture by trawling. Conserv Physiol 7:coz043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollins JPW, Koeck B, Crespel A, Bailey DM, Killen SS (2020) Does thermal plasticity affect susceptibility to capture in fish? Insights from a simulated trap and trawl fishery. Can J Fish Aquat Sci. https://doi.org/10.1139/cjfas-2020-0125

    Article  Google Scholar 

  • Holt RE, Jørgensen C (2015) Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol Let 11:20141032

    Article  Google Scholar 

  • Hsieh CH, Reiss CS, Hewitt RP, Sugihara G (2008) Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Can J Fish Aquat Sci 65:947–961

    Article  Google Scholar 

  • Huey RB, Stevenson RD (1979) Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Am Zool 19:357–366

    Article  Google Scholar 

  • Hunter E, Metcalfe JD, O’Brien CM, Arnold GP, Reynolds JD (2004) Vertical activity patterns of free-swimming adult plaice in the southern North Sea. Mar Ecol Prog Ser 279:261–273

    Article  Google Scholar 

  • Huntingford FA, Andrew G, Mackenzie S, Morera D, Coyle SM, Pilarczyk M, Kadri S (2010) Coping strategies in a strongly schooling fish, the common carp Cyprinus carpio. J Fish Biol 76:1576–1591

    Article  CAS  PubMed  Google Scholar 

  • James NC, Whitfield AK, Cowley PD (2008) Preliminary indications of climate-induced change in a warm-temperate South African estuarine fish community. J Fish Biol 72:1855–1863

    Article  Google Scholar 

  • Jonas I, Schubert KA, Reijne AC, Scholte J, Garland T Jr, Gerkema MP, Scheurink AJW, Nyakas C, van Dijk G (2010) Behavioral traits are affected by selective breeding for increased wheelrunning behavior in mice. Behav Genet 40:542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keyser FM, Broome JE, Bradford RG, Sanderson B, Redden AM (2016) Winter presence and temperature-related diel vertical migration of striped bass (Morone saxatilis) in an extreme high-flow passage in the inner Bay of Fundy. Can J Fish Aquat Sci 1786:1777–1786

    Article  Google Scholar 

  • Killen SS, Marras S, McKenzie DJ (2011) Fuel, fasting, fear: routine metabolic rate and food deprivation exert synergistic effects on risk-taking in individual juvenile European sea bass. J Anim Ecol 80:1024–1033

    Article  PubMed  Google Scholar 

  • Killen SS, Marras S, Ryan MR, Domenici P, McKenzie DJ (2012) A relationship between metabolic rate and risk-taking behaviour is revealed during hypoxia in juvenile European sea bass. Funct Ecol 26:134–143

    Article  Google Scholar 

  • Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P (2013) Environmental stressors alter relationships between physiology and behaviour. Trends Ecol Evol 28:651–658

    Article  PubMed  Google Scholar 

  • Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG, McCormick MI (2014) Aerobic scope predicts dominance during early life in a tropical damselfish. Funct Ecol 28:1367–1376

    Article  Google Scholar 

  • Killen SS, Glazier DS, Rezende EL, Clark TD, Atkinson D, Willener AS, Halsey LG (2016) Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am Nat 187:592–606

    Article  PubMed  Google Scholar 

  • Killen SS, Marras S, Nadler L, Domenici P (2017) The role of physiological traits in assortment among and within fish shoals. Philos Trans R Soc b Biol Sci 372:20160233

    Article  Google Scholar 

  • Killen SS, Esbaugh AJ, Martins N, Tadeu Rantin F, McKenzie DJ (2018) Aggression supersedes individual oxygen demand to drive group air-breathing in a social catfish. J Anim Ecol 87:223–234

    Article  PubMed  Google Scholar 

  • Koeck B, Závorka L, Aldvén D, Näslund J, Arlinghaus R, Thörnqvist PO, Winberg S, Björnsson BT, Johnsson JI (2019) Angling selects against active and stress-resilient phenotypes in rainbow trout. Can J Fish Aquat Sci 76:320–333

    Article  CAS  Google Scholar 

  • Kolok AS, Hartman MM, Sershan J (2002) The physiology of copper tolerance in fathead minnows: insight from an intraspecific, correlative analysis. Environ Toxicol Chem 21:1730–1735

    Article  CAS  PubMed  Google Scholar 

  • Krause J, Ruxton G, Cheng D, Kirkman E (2000) Species-specific patterns of refuge use in fish: the role of metabolic expenditure and body length. Behaviour 137:1113–1127

    Article  Google Scholar 

  • Lahti K, Huuskonen H, Laurila A, Piironen J (2002) Metabolic rate and aggressiveness between brown trout populations. Funct Ecol 16:167–174

    Article  Google Scholar 

  • Laubenstein TD, Rummer JL, Nicol S, Parsons DM, Pether SM, Pope S, Smith N, Munday PL (2018) Correlated effects of ocean acidification and warming on behavioral and metabolic traits of a large pelagic fish. Diversity 10:35

    Article  CAS  Google Scholar 

  • Laubenstein TD, Rummer JL, McCormick MI, Munday PL (2019) A negative correlation between behavioural and physiological performance under ocean acidification and warming. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Lennox R, Cooke SJ (2014) State of the interface between conservation and physiology: a bibliometric analysis. Conserv Physiol 2:1–9

    Article  Google Scholar 

  • Lewin WC, Arlinghaus R, Mehner T (2006) Documented and potential biological impacts of recreational fishing: insights for management and conservation. Rev Fish Sci 14:305–367

    Article  Google Scholar 

  • Li CY, Tseng YC, Chen YJ, Yang Y, Hsu Y (2020) Personality and physiological traits predict contest interactions in Kryptolebias marmoratus. Behav Process 173:104079

    Article  Google Scholar 

  • Long T, Yuan M, Yuan H (2021) Heritability of animal individuality in fish: distribution, behavior, metabolism and stress response. Aquaculture. https://doi.org/10.1016/j.aquaculture.2021.736415

    Article  Google Scholar 

  • Louison MJ, Stein JA, Suski CD (2019) The role of social network behavior, swimming performance, and fish size in the determination of angling vulnerability in bluegill. Behav Ecol Sociobiol 73:139

    Article  Google Scholar 

  • Lovegrove BG (2003) The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol 173:87–112

    Article  CAS  Google Scholar 

  • Martins CI, Silva PI, Conceição LE, Costas B, Höglund E, Øverli Ø, Schrama JW (2011) Linking fearfulness and coping styles in fish. PLoS One 6:e28084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marty L, Dieckmann U, Ernande B (2015) Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential. Evol Appl 8:47–63

    Article  PubMed  Google Scholar 

  • Mathias ML, Nunes AC, Marques CC, Auffray JC, Britton-Davidian J, Ganem G, Gündüz I, Ramalhinho MG, Searle JB, Speakman JR (2006) Effects of climate on oxygen consumption and energy intake of chromosomally divergent populations of the house mouse (Mus musculus domesticus) from the island of Madeira (North Atlantic, Portugal). Funct Ecol 20:330–339

    Article  Google Scholar 

  • Mathot KJ, Martin K, Kempenaers B, Forstmeier W (2013) Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity 111:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy ID (2001) Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. J Fish Biol 59:1002–1014

    Article  Google Scholar 

  • McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C (2016) Conservation physiology of marine fishes: state of the art and prospects for policy. Conserv Physiol 4:cow046

    Article  PubMed  PubMed Central  Google Scholar 

  • McLean S, Persson A, Norin T, Killen SS (2018) Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr Biol 28:1144–1149

    Article  CAS  PubMed  Google Scholar 

  • McLean MF, Litvak MK, Stoddard EM, Cooke SJ, Patterson DA, Hinch SG, Welch DW, Crossin GT (2020) Linking environmental factors with reflex action mortality predictors, physiological stress, and post-release movement behaviour to evaluate the response of white sturgeon (Acipenser transmontanus Richardson, 1836) to catch-and-release angling. Comp Biochem Physiol Part A Mol Integr Physiol 240:110618

    Article  CAS  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press

    Google Scholar 

  • Metcalfe JD, Arnold G (1997) Tracking fish with electronic tags. Nature 387:665–666

    Article  CAS  Google Scholar 

  • Metcalfe NB, Thomson BC (1995) Fish recognize and prefer to shoal with poor competitors. Proc R Soc London Seri B Biol Sci 259:207–210

    Article  Google Scholar 

  • Metcalfe NB, Taylor AC, Thorpe JE (1995) Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim Behav 49:431–436

    Article  Google Scholar 

  • Metcalfe JD, Le Quesne WJF, Cheung WWL, Righton DA (2012) Conservation physiology for applied management of marine fish: an overview with perspectives on the role and value of telemetry. Philos Trans R Soc b Biol Sci 367:1746–1756

    Article  CAS  Google Scholar 

  • Metcalfe NB, Van Leeuwen TE, Killen SS (2016) Does individual variation in metabolic phenotype predict fish behaviour and performance? J Fish Biol 88:298–321

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Hayashida K, Sakashita T, Fujii M, Nii H, Nakao K, Ueda H (2014) Comparison of the swimming ability and upstream-migration behavior between chum salmon and masu salmon. Can J Fish Aquat Sci 71:217–225

    Article  Google Scholar 

  • Morrongiello J, Thresher R (2015) A statistical framework to explore ontogenetic growth variation among individuals and populations: a marine fish example. Ecol Monogr 85:93–115

    Article  Google Scholar 

  • Neat FC, Taylor AC, Huntingford FA (1998) Proximate costs of fighting in male cichlid fish: the role of injuries and energy metabolism. Anim Behav 55:875–882

    Article  CAS  PubMed  Google Scholar 

  • Neubauer P, Andersen KH (2019) Thermal performance of fish is explained by an interplay between physiology, behaviour and ecology. Conserv Physiol 7:coz025

    Article  PubMed  PubMed Central  Google Scholar 

  • Norin T, Malte H (2012) Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout. Physiol Biochem Zool 85:645–656

    Article  PubMed  Google Scholar 

  • Norin T, Malte H, Clark TD (2015) Differential plasticity of metabolic rate phenotypes in a tropical fish facing environmental change. Funct Ecol. https://doi.org/10.1111/1365-2435.12503

    Article  Google Scholar 

  • Pankhurst NW, Munday PL (2011) Effects of climate change on fish reproduction and early life history stages. Mar Freshw Res 62:1015–1026

    Article  CAS  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evolut Syst 37:637–669

    Article  Google Scholar 

  • Pauly D, Cheung WW (2018) Sound physiological knowledge and principles in modelling shrinking of fishes under climate change. Glob Change Biol 24:15–26

    Article  Google Scholar 

  • Petersen JK, Petersen GI (1990) Tolerance, behaviour and oxygen consumption in the sand goby, Pomatoschistus minutus (Pallas), exposed to hypoxia. J Fish Biol 37:921–933

    Article  Google Scholar 

  • Pimentel MS, Faleiro F, Marques T, Bispo R, Dionísio G, Faria AM, Machado J, Peck MA, Pörtner H, Pousão-Ferreira P, Gonçalves EJ, Rosa R (2016) Foraging behaviour, swimming performance and malformations of early stages of commercially important fishes under ocean acidification and warming. Clim Change 137:495–509

    Article  CAS  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Marine Ecol Prog Ser 373:203–217

    Article  CAS  Google Scholar 

  • Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779

    Article  PubMed  Google Scholar 

  • Pörtner HO, Bock C, Mark FC (2018) Connecting to ecology: a challenge for comparative physiologists? Response to ‘Oxygen-and capacity-limited thermal tolerance: blurring ecology and physiology.’ J Exp Biol 221:jeb174185

    Article  PubMed  Google Scholar 

  • Puckett KJ, Dill LM (1985) The energetics of feeding territoriality in juvenile Coho salmon (Oncorhynchus kisutch). Behaviour 92:97–111

    Article  Google Scholar 

  • Reale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318

    Article  PubMed  Google Scholar 

  • Redpath TD, Cooke SJ, Suski CD, Arlinghaus R, Couture P, Wahl DH, Philipp DP (2010) The metabolic and biochemical basis of vulnerability to recreational angling after three generations of angling-induced selection in a teleost fish. Can J Fish Aquat Sci 67:1983–1992

    Article  Google Scholar 

  • Reid D, Armstrong JD, Metcalfe NB (2012) The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. J Anim Ecol 81:868–875

    Article  PubMed  Google Scholar 

  • Rhein M, Rintoul SR, Aoki S (2013) Climate change 2013: the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia VY, Midgley B (eds) Climate change. Cambridge University Press, USA, pp 255–316

    Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci 66:1570–1583

    Article  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model: a new model integrating homeostasis, allostasis, and stress. Hormones Behav 55:375–389

    Article  Google Scholar 

  • Ros AFH, Becker K, Oliveira RF (2006) Aggressive behaviour and energy metabolism in a cichlid fish, Oreochromis mossambicus. Physiol Behav 89:164–170

    Article  CAS  PubMed  Google Scholar 

  • Rouault M, Pohl B, Penven P (2010) Coastal oceanic climate change and variability from 1982 to 2009 around South Africa. Afr J Mar Sci 32:237–246

    Article  Google Scholar 

  • Rupia EJ, Binning SA, Roche DG, Lu W (2016) Fight-flight or freeze-hide? Personality and metabolic phenotype mediate physiological defence responses in flatfish. J Anim Ecol 85:927–937

    Article  PubMed  Google Scholar 

  • Sandblom E, Clark TD, Gräns A, Ekström A, Brijs J, Sundström LF, Odelström A, Adill A, Aho T, Jutfelt F (2016) Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat Commun 7:1–8

    Article  CAS  Google Scholar 

  • Satterfield D, Johnson DW (2020) Local adaptation of antipredator behaviors in populations of a temperate reef fish. Oecologia 194:571

    Article  PubMed  Google Scholar 

  • Scantlebury M, Waterman JM, Hillegass M, Speakman JR, Bennett NC (2007) Energetic costs of parasitism in the Cape ground squirrel Xerus inauris. Proc R Soc Lond 274:2169–2177

    CAS  Google Scholar 

  • Schindler DE, Hilborn R (2015) Prediction, precaution, and policy under global change. Science 347:953–954

    Article  CAS  PubMed  Google Scholar 

  • Schjolden J, Stoskhus A, Winberg S (2005) Does individual variation in stress responses and agonistic behavior reflect divergent stress coping strategies in juvenile rainbow trout? Physiol Biochem Zool 78:715–723

    Article  CAS  PubMed  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F, Krause J (2017) Physiological mechanisms underlying animal social behaviour. Philos Trans R Soc Biol Sci 372:20160231

    Article  Google Scholar 

  • Seebacher F, Ward AJW, Wilson RS (2013) Increased aggression during pregnancy comes at a higher metabolic cost. J Exp Biol 216:771–776

    Article  CAS  PubMed  Google Scholar 

  • Seppänen E, Tiira K, Huuskonen H, Piironen J (2009) Metabolic rate, growth and aggressiveness in three Atlantic salmon Salmo salar populations. J Fish Biol 74:562–575

    Article  PubMed  Google Scholar 

  • Shultz AD, Murchie KJ, Griffith C, Cooke SJ, Danylchuk AJ, Goldberg TL, Suski CD (2011) Impacts of dissolved oxygen on the behavior and physiology of bonefish: implications for live-release angling tournaments. J Exp Mar Biol Ecol 402:19–26

    Article  Google Scholar 

  • Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative overview. Q R Biol 79:241–277

    Article  Google Scholar 

  • Sims DW, Mouth VJW, Genner MJ, Southward AJ, Hawkins SJ (2004) Low-temperature-driven early spawning migration of a temperate marine fish. J Anim Ecol 73:333–341

    Article  Google Scholar 

  • Skeeles MR, Winkler AC, Duncan MI, James NC, van der Walt KA, Potts WM (2020) The use of internal heart rate loggers in determining cardiac breakpoints of fish. J Therm Biol. https://doi.org/10.1016/j.jtherbio.2020.102524

    Article  PubMed  Google Scholar 

  • Sloat MR, Reeves GH (2014) Individual condition, standard metabolic rate, and rearing temperature influence steelhead and rainbow trout (Oncorhynchus mykiss) life histories. Can J Fish Aquat Sci 71:491–501

    Article  CAS  Google Scholar 

  • Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ J Exp Biol 213:912–920

    Article  CAS  PubMed  Google Scholar 

  • Sousa LL, Queiroz N, Mucientes G, Humphries NE, Sims DW (2016) Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic. Anim Biotelemetry. https://doi.org/10.1186/s40317-016-0099-2

    Article  Google Scholar 

  • Suski CD, Philipp DP (2004) Factors affecting the vulnerability to angling of nesting male largemouth bass and smallmouth bass. Trans Am Fish Soc 133:1100–1106

    Article  Google Scholar 

  • Sutter DAH, Suski CD, Philipp DP, Klefoth T, Wahl DH, Kersten P, Cooke SJ, Arlinghaus R (2012) Recreational fishing selectively captures individuals with the highest fitness potential. Proc Natl Acad Sci 109:20960–20965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Polverino G, Martin JM, Bertram MG, Wiles SC, Palacios MM, Bywater CL, White CR, Wong BB (2020) Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish. Environ Pollut 263:114450

    Article  CAS  PubMed  Google Scholar 

  • Thomas DW, Morand-Ferron J, Careau V (2001) Physiological ecology of Mediterranean blue tits (Parus caeruleus) 1. A test for inter-population differences in resting metabolic rate and thermal conductance as a response to hot climates. Zoology 104:33–40

    Article  CAS  PubMed  Google Scholar 

  • Tinbergen N (1963) On aims and methods of ethology. Z Tierpsychol 20:410–433. https://doi.org/10.1111/j.1439-0310.1963.tb01161.x

    Article  Google Scholar 

  • Tudorache C, Schaaf MJ, Slabbekoorn H (2013) Covariation between behaviour and physiology indicators of coping style in zebrafish (Danio rerio). J Endocrinol 219:251–258

    Article  CAS  PubMed  Google Scholar 

  • Urbina MA, Forster ME, Glover CN (2011) Leap of faith: voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia. Physiol Behav 103:240–247

    Article  CAS  PubMed  Google Scholar 

  • Uusi-Heikkila S, Wolter C, Klefoth T, Arlinghaus R (2008) A behavioural perspective on fishing-induced evolution. Trends Ecol Evol 23:419–421

    Article  PubMed  Google Scholar 

  • Vaz-Serrano J, Ruiz-Gomez MDL, Gjøen HM, Skov PV, Huntingford FA, Øverli Ø, Höglund E (2011) Consistent boldness behaviour in early emerging fry of domesticated Atlantic salmon (Salmo salar): decoupling of behavioural and physiological traits of the proactive stress coping style. Physiol Behav 103:359–364

    Article  CAS  PubMed  Google Scholar 

  • Vedor M, Queiroz N, Mucientes G, Couto A, da Costa I, Dos Santos A, Vandeperre F, Fontes J, Afonso P, Rosa R, Humphries NE (2021) Climate-driven deoxygenation elevates fishing vulnerability for the ocean’s widest ranging shark. Elife 10:e62508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Holst E (1936) Vom dualismus der motorischen und der automatisc-rhythmischen funktion im ruckenmark und vom wesen des automatischen rhythmus. Pfliigers Archiv Fur Die Gesamte Physiologie 237:356–378

    Article  Google Scholar 

  • Von Holst E, Mittelstaedt H (1950) The principle of reafference: Interactions between the central nervous system and the peripheral organs. Die Naturwissenschften 37:464–476

    Google Scholar 

  • Ward TD, Algera DA, Gallagher AJ, Hawkins E, Horodysky A, Jørgensen C, Killen SS, McKenzie DJ, Metcalfe JD, Peck MA, Vu M (2016) Understanding the individual to implement the ecosystem approach to fisheries management. Conserv Physiol 4:cow005

    Article  PubMed  PubMed Central  Google Scholar 

  • Warnock WG, Rasmussen JB (2014) Comparing competitive ability and associated metabolic traits between a resident and migratory population of bull trout against a non-native species. Environ Biol Fishes 97:415–423

    Article  Google Scholar 

  • Warren DT, McCormick MI (2019) Intrageneric differences in the effects of acute temperature exposure on competitive behaviour of damselfishes. PeerJ 7:e7320

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren DT, Donelson JM, McCormick MI, Ferrari MCO, Munday PL (2016) Duration of exposure to elevated temperature affects competitive interactions in juvenile reef fishes. PLOS ONE 11:e0164505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitlock RE, Hazen EL, Walli A, Farwell C, Bograd SJ, Foley DG, Castleton M, Block BA (2015) Direct quantification of energy intakein an apex marine predator suggests physiology is a key driver of migrations. Sci Adv 1:e1400270

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson ADM, Brownscombe JW, Sullivan B, Jain-Schlaepfer S, Cooke SJ (2015) Does angling technique selectively target fishes based on their behavioural type? PLoS One 10:e0135848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong B, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673

    Article  Google Scholar 

  • Yamamoto T, Ueda H, Higashi S (1998) Correlation among dominance status, metabolic rate and otolith size in masu salmon. J Fish Biol 52:281–290

    Article  Google Scholar 

  • Zou H, Shi M, Li R, Zhang X, Lu W (2021) Comparative transcriptomic analysis of in the hindbrain of olive flounder (Paralichthys olivaceus) considering individual behavior-type and oxygen metabolism. Comp Bioche Physiol Part D Genom Proteom 38:100799

    CAS  Google Scholar 

  • Zub K, Piertney S, Szafranska PA, Konarzewski M (2012) Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Mol Ecol 21:1283–2129

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers of this manuscript for their valuable comments, which greatly improved the manuscript. We thank graphic artist, Carys Bailey, for her collaboration on Fig. 4, “The fission or fusion of social groups is expected in the Anthropocene as climate change and angling have coupled effects on the selection for metabolic and behavioural traits.”

Funding

This work was supported by the African Coelacanth Ecosystem Programme [Grant Number 110762 (WMP)] and the National Research Foundation [Grant Number 12093 (ARC)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Bailey.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailey, L.A., Childs, A.R., James, N.C. et al. Links between behaviour and metabolic physiology in fishes in the Anthropocene. Rev Fish Biol Fisheries 32, 555–579 (2022). https://doi.org/10.1007/s11160-022-09701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-022-09701-2

Keywords

Navigation