Skip to main content

Advertisement

Log in

The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The influence of climate (mean annual rainfall, rainfall variability, ambient temperature, T a) on the basal metabolic rate (BMR) of 267 small mammals (<1 kg) from six zoogeographical zones was investigated using conventional and phylogenetically independent data (linear contrasts). All climate variables varied between zones, as did BMR and body temperature (T b) , but not thermal conductance. Holarctic zones were more seasonal and colder, but rainfall was less variable, than non-Holarctic zones. In general, the BMR was most strongly influenced by body mass, followed by T a and the rainfall variables. However, there was significant variation in the strength of these relationships between zones. BMR and T b increased with latitude, and mass-independent BMR and T b were positively correlated. The latter relationship offers evidence of a slow-fast metabolic continuum in small mammals. The fast end of the continuum (high BMR) is associated with the highest latitudes where BMR is most strongly influenced by T a and mean annual rainfall (i.e. mean productivity). The slow end of the continuum (low BMR) is associated with the semi-tropics, low productivity zones, and climatically unpredictable zones, such as deserts. Here rainfall variability has the strongest influence on BMR after body size. The implications of a slow–fast metabolic continuum are discussed in terms of various models associated with the evolution of BMR, such as the aerobic capacity models and the "energetic definition of fitness" models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e.
Fig. 2a–e.
Fig. 3a–c.
Fig. 4a–c.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

BMR:

basal metabolic rate

C :

thermal conductance

CV MAR :

coefficient of variation of mean annual rainfall

EDF :

energetic definition of fitness

ENSO :

El Niño Southern Oscillations

G :

growth

MAR :

mean annual rainfall

M b :

body size

MR :

metabolic rate

N :

net energy

P :

production energy

PI :

phylogenetically independent

RMR :

resting metabolic rate

T a :

ambient temperature

T b :

body temperature

T cold :

mean coldest month temperature over all years

T lc :

lower critical limit of thermoneutrality

T mean :

mean yearly month temperature over all years

T warm :

mean warmest month temperature over all years

Reference List

  • Antinuchi CD, Busch C (2000) Metabolic rates and thermoregulatory characteristics of Akodon azarae (Rodentia : Sigmodontinae). Rev Chil Hist Nat 73:131–138

    Google Scholar 

  • Ar A, Arieli R, Shkolnik A (1977) Blood-gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respir Physiol 30:201–218

    CAS  PubMed  Google Scholar 

  • Barome PO, Monnerot M, Gautun JC (2000) Phylogeny of the genus Acomys (Rodentia, Muridae) based on the cytochrome b mitochondrial gene: implications on taxonomy and phylogeography. Mamm 64:423–438

    Google Scholar 

  • Bartholomew GA, Hudson JW (1962) Hibernation, estivation, temperature regulation, evaporative water loss, and heart rate of the pygmy possum Cercaertus nanus. Physiol Zool 35:94–107

    Google Scholar 

  • Bartholomew GA, MacMillen RE (1961) Oxygen consumption, estivation, and hibernation in the kangaroo mouse, Microdipodops pallidus. Physiol Zool 34:177–183

    Google Scholar 

  • Baudinette RV (1972) Energy metabolism and evaporative water loss in the California ground squirrel: effects of burrow temperature and water vapour pressure. J Comp Physiol 81:57–72

    Google Scholar 

  • Bell DM, Hamilton MJ, Edwards CW, Wiggins LE, Martinez RM, Strauss RE, Bradley RD, Baker RJ (2001) Patterns of karyotypic megaevolution in Reithrodontomys: evidence from a cytochrome-b phylogenetic hypothesis. J Mammal 82:81–91

    Google Scholar 

  • Bellinvia E, Munclinger P, Flegr J (1999) Application of the RAPD technique for a study of the phylogenetic relationships among eight species of the genus Apodemus. Folia Zool 48:241–248

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Sci 206:649–654

    CAS  Google Scholar 

  • Bienkowski P, Marszalek U (1974) Metabolism and energy budget in the snow vole. Acta Theriol 19:55–67

    Google Scholar 

  • Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biol Rev 74:143–175

    CAS  Google Scholar 

  • Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogentic inertia, adaptation, and comparative methods. J Evol Biol (In press)

    Google Scholar 

  • Bolls NJ, Perfect JR (1972) Summer resting metabolic rate of the gray squirrel. Physiol Zool 45:54–59

    Google Scholar 

  • Bowers JR (1971) Resting metabolic rate in the cotton rat Sigmodon. Physiol Zool 44: 137–147

    Google Scholar 

  • Bozinovic F (1992a) Scaling of basal and maximum metabolic rate in rodents and the aerobic capacity model for the evolution of endothermy. Physiol Zool 65:921–932

    Google Scholar 

  • Bozinovic F (1992b) Rate of basal metabolism of grazing rodents from different habitats. J Mamm 73:379–384

    Google Scholar 

  • Bozinovic F, Contreras LC (1990) Basal rate of metabolism and temperature regulation of two desert herbivorous octodontid rodents: Octomys mimax and Typmanoctomys barrerae. Oecologia 84:567–570

    Google Scholar 

  • Bozinovic F, Marquet PA (1991) Energetics and torpor in the Atacama desert-dwelling rodent Phyllotis darwini rupestris. J Mamm 72:734–738

    Google Scholar 

  • Bozinovic F, Rosenmann M (1988a) Comparative energetics of South American cricetid rodents. Comp Biochem Physiol A 91:195–202

    CAS  PubMed  Google Scholar 

  • Bozinovic F, Rosenmann M (1988b) Daily torpor in Calomys musculinus, a South American rodent. J Mamm 69:150–152

    Google Scholar 

  • Bozinovic F, Rosenmann M (1989) Maximum metabolic rate of rodents: physiological and ecological consequences on distribution limits. Funct Ecol 3:173–181

    Google Scholar 

  • Bozinovic F, Fernando Novoa F, Veloso C (1990) Seasonal changes in energy expenditure and digestive tract of Abrothrix andinus (Cricetidae) in the Andes range. Physiol Zool 63:1216–1231

    Google Scholar 

  • Bradley WG, Miller JS, Yousef MK (1974) Thermoregulatory patterns in pocket gophers: desert and mountain. Physiol Zool 47:172–179

    Google Scholar 

  • Brody S (1945) Bioenergetics and growth. New York, Reinhold

  • Brower JE, Cade TJ (1966) Ecology and physiology of Napaeozapus insignis (Miller) and other woodland mice. Ecol 47:46–63

    Google Scholar 

  • Brown JH, Marquet PA, Taper ML (1993) Evolution of body size: consequences of an energetic definition of fitness. Am Nat 142:573–584

    Article  Google Scholar 

  • Brown JH, Taper ML, Marquet PA (1996) Darwinian fitness and reproductive power: reply to Kozłowski. Am Nat 147:1092–1097

    Article  Google Scholar 

  • Buffenstein R, Jarvis JUM (1985) Thermoregulation and metabolism in the smallest African gerbil, Gerbillus pusillus. J Zool (Lond) 205:107–121

    Google Scholar 

  • Carpenter RE (1966) A comparison of thermoregulation and water metabolism in the kangaroo rats Dipodomys agilis and Dipodomys merriami. Univ Calif Publ Zool 78:1–36

    Google Scholar 

  • Casey TM, Withers PC, Casey KK (1979) Metabolic and respiratory responses of Arctic mammals to ambient temperature during summer. Comp Biochem Physiol A 64:331–341

    Google Scholar 

  • Catzeflis FM, Hänni C, Sourrouille P, Douzery E (1995) Molecular systematics of hystricognath rodents: the contribution of sciurognath mitochondrial 12S rRNA sequences. Mol Phylogenet Evol 4:357–360

    Article  CAS  PubMed  Google Scholar 

  • Caviiedes-Vidal E, Bozinovic F, Rosenmann M (1987) Thermal freedom of Graomys griseoflavus in a seasonal environment. Comp Biochem Physiol A 87:257–259

    PubMed  Google Scholar 

  • Caviiedes-Vidal E, Codelia EC, Roig V, Dona R (1990) Facultative torpor in the South American rodent Calomys venustus (Rodentia: Cricetidae). J Mamm 71:72–75

    Google Scholar 

  • Chaline J, Graf J-D (1988) Phylogeny of the Arvicolidae (Rodentia): biochemical and paleontological evidence. J Mamm 69:22–33

    Google Scholar 

  • Chang WYB (1997) ENSO: extreme climate events and impacts on Asian deltas. J Am Water Res Assoc 33:605–614

    Google Scholar 

  • Chown SL, Gaston KJ (1997) The species-body size distribution: energy, fitness and optimality. Funct Ecol 11:365–375

    Google Scholar 

  • Collins BG (1973a) The ecological significance of thermoregulatory responses to heat stress shown by two populations of an Australian murid, Rattus fuscipes. Comp Biochem Physiol A 44:1129–1140

    CAS  PubMed  Google Scholar 

  • Collins BG (1973b) Physiological responses to temperature stress by an Australian murid, Rattus lutreolus. J Mamm 54:356–368

    CAS  Google Scholar 

  • Collins BG, Bradshaw SD (1973) Studies on the metabolism, thermoregulation, and evaporative water loss of two species of Australian rats, Rattus villosissimus and Rattus rattus. Physiol Zool 46:1–21

    Google Scholar 

  • Conroy CJ, Cook JA (2000) Molecular systematics of a holarctic rodent (Microtus : Muridae). J Mammal 81:344–359

    Google Scholar 

  • Curran LM, Caniago I, Paoli GD, Astianti D, Kusneti M, Leighton M, Nirarita CE, Haeruman H (1999) Impact of El Niño and logging on canopy tree recruitment in Borneo. Science 286:2184–2188

    Article  CAS  PubMed  Google Scholar 

  • Dawson TJ, Dawson WR (1982) Metabolic scope and conductance in response to cold of some dasyurid marsupials and Australian rodents. Comp Biochem Physiol A 71:59–64

    Google Scholar 

  • Dawson TJ, Fanning FD (1981) Thermal and energetic problems of semiaquatic mammals: a study of the Australian water rat, including comparisons with the Platypus. Physiol Zool 54:285–296

    Google Scholar 

  • Dawson TJ, Hulbert AJ (1969) Standard energy metabolism of marsupials. Nature 221:383

    Google Scholar 

  • Dawson TJ, Olson JM (1988) Thermogenic capabilities of the opossum Monodelphis domestica when warm and cold acclimated: similarities between American and Australian marsupials. Comp Biochem Physiol A 89:85–91

    CAS  PubMed  Google Scholar 

  • Dawson TJ, Wolfers JM (1978) Metabolism, thermoregulation and torpor in shrew-sized marsupials of the genus Planigale. Comp Biochem Physiol A 59:305–309

    Google Scholar 

  • Dawson WR (1955) The relation of oxygen consumption to temperature in desert rodents. J Mamm 36:543–553

    Google Scholar 

  • Deavers DR, Hudson JW (1981) Temperature regulation in two rodents (Clethrionomys gapperi and Peromyscus leucopus) and a shrew (Blarina brevicauda) inhabiting the same environment. Physiol Zool 54:94–108

    Google Scholar 

  • DelPero M, Masters JC, Zuccon D, Cervella P, Crovella S, Ardito G (2000) Mitochondrial sequences as indicators of generic classification in bush babies. Int J Primatol 21:889–904

    Article  Google Scholar 

  • Díaz-Uriarte R, Garland T (1996) Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from brownian motion. Syst Biol 45:27–47

    Google Scholar 

  • Downs CT, Perrin MR (1990) Thermal parameters of four Gerbillurus species. J Therm Biol 15:291–300

    Google Scholar 

  • Downs CT, Perrin MR (1994) Comparative aspects of the thermal biology of the short-tailed gerbil, Desmodillus auricularis, and the bushveld gerbil, Tatera leucogaster. J Therm Biol 19:385–392

    Google Scholar 

  • Downs CT, Perrin MR (1995a) The thermal biology of the white-tailed rat Mystromys albicaudatus, a cricetine relic in southern temperate African grassland. Comp Biochem Physiol A 110:65–69

    Article  CAS  Google Scholar 

  • Downs CT, Perrin MR (1995b) The thermal biology of three southern African elephant shrews. J Therm Biol 20:445–450

    Article  Google Scholar 

  • Downs CT, Perrin MR (1996) The thermal biology of southern Africa's smallest rodent, Mus minutoides. S Afr J Sci 92:282–285

    Google Scholar 

  • Drozdz A, Gorecki A, Grodzinski W, Pelikan J (1971) Bioenergetics of water voles (Arvicola terrestris L.) from southern Monrovia. Ann Zool Fenn 8:97–103

    Google Scholar 

  • Du Plessis A, Erasmus T, Kerley GIH (1989) Thermoregulatory patterns of two sympatric rodents: Otomys unisulcatus and Parotomys brantsii. Comp Biochem Physiol A 94:215–220

    PubMed  Google Scholar 

  • Duxbury KJ, Perrin MR (1992) Thermal biology and water turnover rate in the Cape gerbil, Tatera afra. J Therm Biol 17:199–208

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Flannery T (1994) The future eaters. New York, George Braziller

  • Fleming MR (1980) Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia: Petauridae). Aust J Zool 28:521–534

    Google Scholar 

  • Fleming MR (1985a) The thermal physiology of the mountain pygmy-possum Burramys parvus (Marsupialia: Burramyidae). Aust Mamm 8:79–90

    Google Scholar 

  • Fleming MR (1985b) The thermal physiology of the feathertail glider, Acrobates pygmaeus (Marsupialia: Burramyidae). Aust J Zool 33:667–681

    Google Scholar 

  • Garland T, Carter PA (1994) Evolutionary physiology. Annu Rev Physiol 56:579–621

    PubMed  Google Scholar 

  • Garland T, Díaz-Uriarte R (1999) Polytomies and phylogenetically independent contrasts: an examination of the bounded degrees of freedom approach. Syst Biol 48:547–558

    Article  PubMed  Google Scholar 

  • Garland T, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–365

    PubMed  Google Scholar 

  • Garland T, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Garland T, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Gebczynski M, Szuma E (1993) Metabolic rate in Pitymys subterraneus of two coat colour morphs. Acta Theriol 38:291–296

    Google Scholar 

  • Geiser F (1985) Tagesschlaflethargie bei der gelbfüssigen Breitfussbeutelspitzmaus, Antechinus flavipes (Marsupialia: Dasyuridae). Z Saügertierk 50:125–127

  • Geiser F (1986) Thermoregulation and torpor in the kultarr, Antechinomys laniger. J Comp Physiol B 156:751–757

    Google Scholar 

  • Geiser F (1987) Hibernation and daily torpor in pygmy possums (Cercartetus spp., Marsupialia). Physiol Zool 60:93–102

    Google Scholar 

  • Geiser F (1988) Daily torpor and thermoregulation in Antechinus (Marsupialia): influence of body mass, season, development, reporoduction, and sex. Oecologia 77:395–399

    Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Google Scholar 

  • Geiser F, Baudinette RV (1988) Daily torpor and thermoregulation in the small dasyurid marsupials Planigale gilesi and Ningaui yvonneae. Aust J Zool 36:473–481

    Google Scholar 

  • Geiser F, Augee ML, McCarron HCK, Raison JK (1984) Correlates of torpor in the insectivorous dasyurid marsupial Sminthopsis murina. Aust Mamm 7:185–191

    Google Scholar 

  • Glenn ME (1970) Water relations in three species of deer mice (Peromyscus). Comp Biochem Physiol 33:231–248

    Google Scholar 

  • Golightly RT, Ohmart RD (1978) Heterothermy in free-ranging Abert's squirrels (Sciurus aberti). Ecol 59:897–909

    Google Scholar 

  • Gorecki A (1968) Metabolic rate and energy budget in the bank vole. Acta Theriol 20:341–365

    Google Scholar 

  • Gorecki A (1969) Metabolic rate and energy budget of the striped field mouse. Acta Theriol 14:181–190

    Google Scholar 

  • Gorecki A, Meczeva R, Pis T, Gerasimov S, Walkowa W (1990) Geographical variation of thermoregulation in wild populations of Mus musculus and Mus spretus. Acta Theriol 35:209–214

    Google Scholar 

  • Gould SJ, Johnson RF (1972) Geographical variation. Ann Rev Ecol Syst 3:457–498

    Google Scholar 

  • Goyal SP, Ghosh PK, Prakash I (1981) Significance of body fat in relation to basal metabolic rate in some Indian desert rodents. J Arid Environ 4:59–62

    Google Scholar 

  • Grodzinski W, Böckler H, Heldmaier G (1988) Basal and cold-induced metabolic rats in the harvest mouse Micromys minutus. Acta Theriol 33:293–291

    Google Scholar 

  • Haim A (1981) Heat production and dissipation in a South African diurnal murid Lemniscomys griselda. S Afr J Zool 16:67–70

    Google Scholar 

  • Haim A (1984) Adaptive variations in heat production within gerbils (genus Gerbillus) from different habitats. Oecologia 61:49–52

    Google Scholar 

  • Haim A (1996) Food and energy intake, non-shivering thermogenesis and daily rhythm of body temperature in the bushy-tailed gerbil Sekeetamys calurus: the role of photoperiod manipulations. J Therm Biol 21:37–42

    Article  Google Scholar 

  • Haim A, Borut A (1981) Heat production and dissipation in Golden spiny Mice, Acomys russatus from two extreme habitats. J Comp Physiol 142:445–450

    Google Scholar 

  • Haim A, Fairall N (1987) Bioenergetics of an herbivorous rodent Otomys irroratus. Physiol Zool 60:305–309

    Google Scholar 

  • Haim A, Fourie FIR (1980) Heat production in nocturnal (Praomys natalensis) and diurnal (Rhabdomys pumilio) South African murids. S Afr J Zool 15:91–94

    Google Scholar 

  • Haim A, Skinner JD, Robinson TJ (1987) Bioenergetics, thermoregulation and urine analysis of the genus Xerus from an arid environment. S Afr J Zool 22:45–49

    Google Scholar 

  • Haim A, Rubal A, Harari J (1993) Comparative thermoregulatory adaptations of field mice of the genus Apodemus to habitat challenges. J Comp Physiol B 163:602–607

    CAS  PubMed  Google Scholar 

  • Haim A, McDevitt RM, Speakman JR (1995) Thermoregulatory responses to manipulations of photoperiod in wood mice Apodemus sylvaticus from high latitudes (57 degrees N). J Therm Biol 20:437–443

    Article  Google Scholar 

  • Haim A, Plaut I, Zobedat AS (1996) Physiological diversity within and among wood mice (Apodemus) species in Israel. Isr J Zool 42:347–351

    Google Scholar 

  • Halanych KM, Robinson TJ (1997) Phylogenetic relationships of cottontails (Sylvilagus, Lagomorpha): congruence of 12S rDNA and cytogenetic data. Mol Phylogenet Evol 7:294–302

    Article  CAS  PubMed  Google Scholar 

  • Halanych KM, Robinson TJ (1999) Multiple substitutions affect the phylogenetic utility of cytochrome b and 12S rDNA data: examining a rapid radiation in leporid (Lagomorpha) evolution. J Mol Evol 48:369–379

    CAS  PubMed  Google Scholar 

  • Halanych KM, Demboski JR, Vuuren BJ van, Klein DR, Cook JA (1999) Cytochrome b phylogeny of North American hares and jackrabbits (Lepus, Lagomorpha) and the effects of saturation in outgroup taxa. Mol Phylogenet Evol 11:213–221

    Article  CAS  PubMed  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

  • Harvey PH, Pagel MD, Rees JA (1991) Mammalian metabolism and life histories. Am Nat 137:556–566

    Article  Google Scholar 

  • Hayes JP, Garland T (1995) The evolution of endothermy: testing the aerobic capacity model. Evolution 49:836–847

    Google Scholar 

  • Hayssen V, Lacy RC (1985) Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A 81:741–754

    CAS  PubMed  Google Scholar 

  • Hayward JS (1965) Metabolic rate and its temperature-adaptive significance in six geographical races of Peromyscus. Can J Zool 43:309–323

    CAS  Google Scholar 

  • Hill RW (1975) Metabolism, thermal conductance, and body temperature in one of the largest species of Peromyscus, P. pirrensis. J Therm Biol 1:109–112

    Google Scholar 

  • Hill WG, Caballero A (1992) Artificial selection experiments. Annu Rev Ecol Syst 23:287–310

    Article  Google Scholar 

  • Hill RW, Hooper ET (1971) Temperature regulation in mice of the genus Scotionomys. J Mamm 52:806–816

    Google Scholar 

  • Hinds DS (1973) Acclimatization of thermoregulation in the desert cottontail, Sylvilagus audubonii. J Mamm 54:708–728

    CAS  Google Scholar 

  • Hinds DS, MacMillen RE (1985) Scaling of energy metabolism and evaporative water loss in heteromyid rodents. Physiol Zool 58:282–298

    Google Scholar 

  • Hinds DS, Rice-Warner CN (1992) Maximum metabolism and aerobic capacity in heteromyid and other rodents. Physiol Zool 65:188–214

    Google Scholar 

  • Hinds DS, Baudinette RV, MacMillen RE, Halpern EA (1993) Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol 182:41–56

    CAS  PubMed  Google Scholar 

  • Hochachka PW, Somero GN (1984) Bichemical adaptation. Princeton University Press, Princeton

  • Hooper ET, Hilali ME (1972) Temperature regulation and habits in two species of jerboa, genus Jaculus. J Mamm 53:574–593

    CAS  Google Scholar 

  • Huchon D, Catzeflis FM, Douzery EJP (1999) Molecular evolution of the nuclear von Willebrand Factor Gene in mammals and the phylogeny of rodents. Mol Biol Evol 16:577–589

    CAS  PubMed  Google Scholar 

  • Hudson JW (1965) Temperature regulation and torpidity in the pygmy mouse, Baiomys taylori. Physiol Zool 38:243–254

    Google Scholar 

  • Hudson JW, Deavers DR (1973) Metabolism, pulmocutaneous water loss and respiration of eight species of ground squirrels from different environments. Comp Biochem Physiol A 45:69–100

    CAS  PubMed  Google Scholar 

  • Hudson JW, Deavers DR, Bradley SR (1972) A comparative study of temperature regulation in ground squirrels with special reference to the desert species. Symp Zool Soc Lond 31:191–213

    Google Scholar 

  • Hulbert AJ, Dawson TJ (1974) Standard metabolism and body temperature of perameloid marsupials from different environments. Comp Biochem Physiol A 47:583–590

    CAS  PubMed  Google Scholar 

  • Johansen K, Krog J (1959) Dirunal body temperature variations and hibernation in the birchmouse, Sicista betulina. Am J Physiol 196:1200–1204

    CAS  Google Scholar 

  • Jones DL, Wang LCH (1976) Metabolic and cardiovascular adaptations in western chipmunks, genus Eutamias. J Comp Physiol 105:219–231

    Google Scholar 

  • Jones KE, MacLarnon A (2001) Bat life histories: testing models of mammalian life-history evolution. Evol Ecol Res 3:465–476

    Google Scholar 

  • Katzner TE, Parker KL, Harlow HH (1997) Metabolism and thermal response in winter-acclimatized pygmy rabbits (Brachylagus idahoensis). J Mammal 78:1053–1062

    Google Scholar 

  • Kennedy PM, Macfarlane WV (1971) Oxygen consumption and water turnover of the fat-tailed marsupials Dasycerus cristicauda and Sminthopsis crassicaudata. Comp Biochem Physiol A 40:723–732

    CAS  PubMed  Google Scholar 

  • Kinnear A, Shield JW (1975) Metabolism and temperature regulation in marsupials. Comp Biochem Physiol A 52:235–246

    CAS  PubMed  Google Scholar 

  • Kirsch JAW, Lapointe FJ, Springer MS (1997) DNA-hybridization studies of marsupials and their implications for metatherian classification. Aust J Zool 45:211–280

    CAS  Google Scholar 

  • Kleiber M (1932) Body size and animal metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  • Knight MH, Skinner JD (1981) Thermoregulatory, reproductive and behavioural adaptations of the big eared desert mouse, Malacothrix typica to its arid environment. J Arid Environ 4:137–145

    Google Scholar 

  • Knox CM, Wright PG (1989) Thermoregulation and energy metabolism in the lesser bushbaby, Galago senegalensis moholi. S Afr J Zool 24:89–94

    Google Scholar 

  • Kozłowski J (1996) Energetic definition of fitness? Yes, but not that one. Am Nat 147:1087–1091

    Article  Google Scholar 

  • Kozłowski J, Weiner J (1997) Interspecific allometries are the by-products of body size optimization. Am Nat 149:352–380

    Article  Google Scholar 

  • Layne JN, Dolan PG (1975) Thermoregulation, metabolsim, and water economy in the golden mouse (Ochrotomys nuttalli). Comp Biochem Physiol A 52:153–163

    CAS  PubMed  Google Scholar 

  • Lee AK (1963) The adaptations to arid environments in wood rats of the genus Neotoma. Univ Calif Publ Zool 64:57–96

    Google Scholar 

  • Leon B, Shkolnik A, Shkolnik T (1983) Temperature regulation and water metabolism in the elephant shrew Elephantulus edwardi . Comp Biochem Physiol A 74:399–407

    CAS  PubMed  Google Scholar 

  • Levenson H, Hoffman RS, Nadler CF, Deutsch L, Freeman SD (1985) Systematics of the Holarctic chipmunks (Tamias). J Mamm 66:219–242

    Google Scholar 

  • Lindstedt SL (1980) Energetics and water economy of the smallest desert mammal. Physiol Zool 53:82–97

    Google Scholar 

  • Lovegrove BG (1986) The metabolism of social subterranean rodents: adaptation to aridity. Oecol 69:551–555

    Google Scholar 

  • Lovegrove BG (1989) The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture. Physiol Zool 62:449–469

    Google Scholar 

  • Lovegrove BG (1991) The evolution of eusociality in molerats (Bathyergidae): a question of risks, numbers, and costs. Behav Ecol Sociobiol 28:37–45

    Google Scholar 

  • Lovegrove BG (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    PubMed  Google Scholar 

  • Lovegrove BG (2001) The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution 55:1464–1473

    CAS  PubMed  Google Scholar 

  • Lovegrove BG, Wissel C (1988) Sociality in molerats: metabolic scaling and the role of risk sensitivity. Oecologia 74:600–606

    Google Scholar 

  • Lovegrove BG, Heldmaier G, Knight M (1991a) Seasonal and circadian energetic patterns in an arboreal rodent, Thallomys paedulcus, and a burrow-dwelling rodent, Aethomys namaquensis, from the Kalahari Desert. J Therm Biol 16:199–209

    Google Scholar 

  • Lovegrove BG, Heldmaier G, Ruf T (1991b) Perspectives of endothermy revisited: the endothermic temperature range. J Therm Biol 16:185–197

    Google Scholar 

  • Lovegrove BG, Raman J, Perrin MR (2001) Heterothermy in elephant shrews, Elephantulus spp.(Macroscelidea): daily torpor or hibernation? J Comp Physiol B 171:1–10

    CAS  PubMed  Google Scholar 

  • MacArthur RA, Wang LCH (1973) Physiology of thermoregulation in the pika, Ochotona princeps. Can J Zool 51:11–16

    CAS  PubMed  Google Scholar 

  • MacMillen RE,Garland T (1989) Adaptive physiology. In: Kirkland GL, Layne JN (eds) Advances in the study of Peromyscus (Rodentia). Technical University Press, Lubbock, pp 143–168

  • MacMillen RE, Hinds DS (1983) Water regulatory efficiency in heteromyid rodents: a model and its application. Ecology 64:152–164

    Google Scholar 

  • MacMillen RE, Lee AK (1970) Energy metabolism and pulmocutaneous water loss of Australian hopping mice. Comp Biochem Physiol 35:355–369

    Google Scholar 

  • MacMillen RE, Baudinette RV, Lee AK (1972) Water economy and energy metabolism of the sandy inland mouse, Leggadina hermannsbergensis. J Mamm 53:529–539

    Google Scholar 

  • MacMillen RE, Nelson JE (1969) Bioenergetics and body size in dasyurid marsupials. Am J Physiol 217:1246–1251

    CAS  PubMed  Google Scholar 

  • Martin Y, Gerlach G, Schlotterer C, Meyer A (2000) Molecular phylogeny of European muroid rodents based on complete cytochrome b sequences. Mol Phylogenet Evol 16:37–47

    Article  CAS  PubMed  Google Scholar 

  • Mazen WS, Rudd RL (1980) Comparative energetics in two sympatric species of Peromyscus. J Mamm 61:573–574

    Google Scholar 

  • McNab BK (1978) The comparative energetics of Neotropical marsupials. J Comp Physiol B 125:115–128

    Google Scholar 

  • McNab BK (1979a) The influence of body size on the energetics and distribution of fossorial and burrowing mammals. Ecology 60:1010–1021

    Google Scholar 

  • McNab BK (1979b) Climatic adaptation in the energetics of heteromyid rodents. Comp Biochem Physiol A 62:813–820

    Google Scholar 

  • McNab BK (1980a) On estimating thermal conductance in endotherms. Physiol Zool 53:145–156

    Google Scholar 

  • McNab BK (1980b) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Article  Google Scholar 

  • McNab BK (1982) The physiological ecology of South American mammals. In: Mares MA, Genoways HH (eds) Mammalian biology in South America. Pymatuning Laboratory of Ecology, University of Pittsburgh, Pittsburgh, pp 187–207

  • McNab BK (1984) Physiological convergence amongst ant-eating and termite-eating mammals. J Zool (Lond) 203:485–510

    Google Scholar 

  • McNab BK (1986) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56:1–19

    Google Scholar 

  • McNab BK (1988) Complications inherent in scaling the basal metabolic rate of metabolism in mammals. Q Rev Biol 63:25–54

    CAS  PubMed  Google Scholar 

  • McNab BK (1992) The comparative energetics of rigid endothermy: the Arvicolidae. J Zool (Lond) 227:585–606

    Google Scholar 

  • McNab BK, Morrison P (1963) Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecol Monogr 33:63–82

    Google Scholar 

  • Michaux J, Catzeflis F (2000) The bushlike radiation of muroid rodents is exemplified by the molecular phylogeny of the LCAT nuclear gene. Mol Phylogenet Evol 17:280–293

    Article  CAS  PubMed  Google Scholar 

  • Modi WS (1987) Phylogenetic analyses of chromosome banding patterns among the Nearctic Arvicolidae (Mammalia: Rodentia). Syst Zool 36:109–136

    Google Scholar 

  • Morrison PR, Ryser FA (1962) Metabolism and body temperature in a small hibernator, the meadow jumping mouse, Zapus hudsonicus. J Cell Comp Physiol 60:169–180

    CAS  Google Scholar 

  • Morton SR, Lee AK (1978) Thermoregulation and metabolism in Planigale maculata (Marsupiala: Dasyuridae). J Therm Biol 3:117–120

    Google Scholar 

  • Mueller P, Diamond J (2001) Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proc Nat Acad Sci 98:12550–12554

    Article  CAS  PubMed  Google Scholar 

  • Müller EF (1979) Energy metabolism, thermoregulation and water budget in the slow loris (Nycticebus coucang, Boddaert 1785). Comp Biochem Physiol A 24:167–178

    Google Scholar 

  • Müller EF (1985) Untersuchungen zur Temperaturegulation bei der Wüsterennmaus Gerbillus perpallidus Setzer, 1958. Z Saügertierk 50:337–347

  • Müller EF, Jaksche H (1980) Thermoregulation, oxygen consumption, heart rate and evaporative water loss in the thick-tailed bushbaby (Galago crassicaudatus Geoffroy, 1812). Z Saügertierk 45:269–278

    Google Scholar 

  • Müller EF, Lojewski U (1986) Thermoregulation in the meerkat (Suricata suricata Schreber, 1776). Comp Biochem Physiol A 83:217–224

    PubMed  Google Scholar 

  • Müller EF, Soppa U (1988) Activity pattern and thermoregulation in the cuis (Galea musteloides Meyen, 1833). Z Saügertierk 53:341–348

    Google Scholar 

  • Müller EF, Nieschalk U, Meier B (1985) Thermoregulation in the slender loris (Loris tardigradus). Folia Primatol 44:216–226

    PubMed  Google Scholar 

  • Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryderk OA, Obrien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618

    Article  CAS  PubMed  Google Scholar 

  • Mzilikazi N, Lovegrove BG (2001) Reproductive activity influences thermoregulation and torpor in the pouched mouse, Saccostomus campestris. J Comp Physiol B 172:7–16

    Article  Google Scholar 

  • Nadler CF, Hoffmann RS, Vorontsov NN, Koeppl JW, Deutsch L, Sukernik RI (1982) Evolution in ground squirrels. II. Biochemical comparison of Holarctic populations of Spermophilus. Z Saügertierk 47:198–215

    Google Scholar 

  • Nadler CF, Lyapunova EA, Hoffman RS, Vorontsov NN, Shaitarova LL, Borisov YM (1984) Chromosomal evolution in Holarctic ground squirrels (Spermophilus). II. Giesma-band homologies of chromosomes and the tempo of evolution. Z Saügertierk 49:78–90

    Google Scholar 

  • Nagel VA (1985) Sauerstoffverbrauch, Temperaturegulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae). Z Saügertierk 50:249–266

    Google Scholar 

  • Nakagawa M, Tanaka K, Nakashizuka T, Ohkubo T, Kato T, Maeda T, Sato K, Miguchi H, Nagamasu H, Ogino K, Teo S, Hamid AA, Seng LH (2000) Impact of severe drought associated with the 1997–1998 El Niño in a tropical forest in Sarawak. J Trop Ecol 16:355–367

    Article  Google Scholar 

  • Nedbal MA, Allard MW, Honeycutt RL (1994) Molecular systematics of the Hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 3:206–220

    Article  CAS  PubMed  Google Scholar 

  • Nelson LE, Asling CW (1962) Metabolic rate of tree shrews, Urogale evertii. Proc Soc Exp Biol Med 46:180–185

    Google Scholar 

  • Newman JR, Rudd RL (1978) Minimum and maximum metabolic rates of Sorex sinosus. Acta Theriol 23:371–380

    Article  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Ann Rev Ecol Syst 4:25–51

    Google Scholar 

  • Noy-Meir I (1974) Desert ecosystems: higher trophic levels. Ann Rev Ecol Syst 5:195–214

    Google Scholar 

  • Packard GC (1968) Oxygen consumption of Microtus montanus in relation to ambient temperature. J Mamm 49:215–220

    CAS  Google Scholar 

  • Pagel M (1992) A method for the analysis of comparative data. J Theor Biol 156:431–442

    Google Scholar 

  • Pauls RW (1981) Energetics of the red squirrel: a laboratory study of the effects of temperature, seasonal acclimation, use of the nest and exercise. J Therm Biol 6:79–86

    Google Scholar 

  • Pearson OP (1947) The rate of metabolism of some small mammals. Ecol 28:127–145

    Google Scholar 

  • Pearson OP (1960) The oxygen consumption and bioenergetics of harvest mice. Physiol Zool 33:152–160

    Google Scholar 

  • Perrin MR, Downs CT (1994) Comparative aspects of the thermal biology of the Cape spiny mouse, Acomys subspinosus, and the common spiny mouse, A. spinosissimus. Isr J Zool 40:151–160

    Google Scholar 

  • Perrin MR, Ridgard BW (1999) Thermoregulation and patterns of torpor in the spectacled dormouse Graphiurus ocularis (Smith, 1829) (Gliridae). Trop Zool 12:253–266

    Google Scholar 

  • Planz JV, Zimmerman EG, Spradling TA, Akins DR (1996) Molecular phylogeny of the Neotoma florida species group. J Mamm 77:519–535

    Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool (Lond) 220:417–437

    Google Scholar 

  • Purvis A (1995) A composite estimate of primate phylogeny. Philos Trans R Soc Lond B 348:405–421

    CAS  Google Scholar 

  • Purvis A, Garland T (1993) Polytomies in comparative analyses of continuous characters. Syst Biol 42:569–575

    Google Scholar 

  • Qumsiyeh MB (1986) Phylogenetic studies of the rodent family Gerbillidae: 1. Chromosomal evolution of the southern African complex. J Mamm 67:680–692

    Google Scholar 

  • Qumsiyeh MB, Hamilton MJ, Dempster ER, Baker RJ (1991) Cytogenetics and systematics of the rodent genus Gerbillurus. J Mamm 72:89–96

    Google Scholar 

  • Raman J, Perrin MR (1997) Allozyme and isozyme variation in seven southern African elephant-shrew species. Z Saügertierk 62:108–116

    Google Scholar 

  • Randolph JC (1980) Daily energy metabolism of two rodents (Peromyscus leucopus and Tamias striatus) in their natural environments. Physiol Zool 53:70–81

    Google Scholar 

  • Read AF, Harvey PH (1989) Life history differences among the eutherian radiations. J Zool (Lond) 219:329–353

    Google Scholar 

  • Richardson EJ (1990) Physiological aspects of torpor in the fat mouse (Steatomys praetensis, Dendromurinae). MSc Dissertation, University of Natal, Durban

  • Richter TA, Webb PI, Skinner JD (1997) Limits to the distribution of the southern African ice rat (Otomys slogetti): thermal physiology or competitive exclusion? Funct Ecol 11:240–246

    Google Scholar 

  • Riddle BR (1995) Molecular biogeography in the pocket mice (Perognathus and Chaetodipus) and grasshopper mice (Onychomys): the late cenozoic development of a North American aridlands rodent guild. J Mamm 76:283–301

    Google Scholar 

  • Robinson M, Catzeflis FM, Briolay J, Mouchiroud D (1997) Molecular phylogeny of rodents, with special emphasis on murids: evidence from nuclear gene LCAT. Mol Phylogenet Evol 8:423–434

    Article  CAS  PubMed  Google Scholar 

  • Rogers DS (1990) Genic evolution, historical biogeography, and systematic relationships among pocket mice (subfamily Heteromyinae). J Mamm 71:668–685

    Google Scholar 

  • Rogers DS, Engstrom MD (1992) Evolutionary implications of allozymic variation in tropical Peromyscus of the mexicanus species group. J Mamm 73:55–69

    Google Scholar 

  • Rosenmann M, Morrison P (1974) Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2. Am J Physiol 226:490–495

    CAS  PubMed  Google Scholar 

  • Rosenmann M, Morrison PR, Feist P (1975) Seasonal changes in the metabolic capacity of red-backed voles. Physiol Zool 48:303–313

    Google Scholar 

  • Roxburgh L, Perrin MR (1994) Temperature regulation and activity pattern of the round-eared elephant shrew Macroscelides proboscideus (Shaw). J Therm Biol 19:13–20

    Google Scholar 

  • Ruedi M (1998) Protein evolution in shrews. In: Wójcik JM, Wolsan M (eds) Evolution of shrews. Mammal Research Institute, Polish Acadamy of Sciences, Bialowieza, pp 269–294

  • Saarela S, Hissa R (1993) Metabolism, thermogenesis and daily rhythm of body temperature in the wood lemming, Myopus schisticolor. J Comp Physiol B 163:546–555

    CAS  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1983) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Scholander PF, Hock R, Walters V, Johnson F, Irving L (1950a) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:225–236

    Google Scholar 

  • Scholander PF, Hock R, Walters V, Irving L (1950b) Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol Bull 99:259–271

    Google Scholar 

  • Shkolnik A, Borut A (1969) Temperature and water relations in two species of spiny mice (Acomys). J Mamm 50:245–255

    Google Scholar 

  • Smith AP, Nagy KA, Fleming MR, Green B (1982) Energy requirements and water turnover in free-living Leadbeater's possums, Gymnobelideus leadbeateri (Marsupialia: Petauridae). Aust J Zool 30:737–749

    Google Scholar 

  • Smith MF, Patton JL (1993) The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc 50:149–177

    Article  Google Scholar 

  • Sparti A (1992) Thermogenic capacity of shrews (Mammalia, Soricidae) and its relationship with basal rate of metabolism. Physiol Zool 65:77–96

    Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

  • Steppan SJ (1995) Revision of the leaf-eared mice Phyllotini (Rodentia: Sigmodontinae) with a phylogenetic hypothesis for the Sigmodontinae. Fieldiana Zool 80:1–112

    Google Scholar 

  • Stone RC, Hammer GL, Marcussen T (1996) Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384:252–255

    CAS  Google Scholar 

  • Symonds MRE (1999) Life histories of the Insectivora: the role of phylogeny, metabolism and sex differences. J Zool (Lond) 249:315–337

    Google Scholar 

  • Tiemann-Boege I, Kilpatrick CW, Schmidly DJ, Bradley RD (2000) Molecular phylogenetics of the Peromyscus boylii species group (Rodentia: Muridae) based on mitochondrial cytochrome b sequences. Mol Phylogenet Evol 16:366–378

    Article  CAS  PubMed  Google Scholar 

  • Tkadlec E, Zejda J (1998) Small rodent population fluctuations: the effects of age structure and seasonality. Evol Ecol 12:191–210

    Article  Google Scholar 

  • Tucker VA (1965) Oxygen consumption, thermal conductance, and torpor in the California pocket mouse, Perognathus californicus. J Cell Comp Physiol 65:393–404

    CAS  Google Scholar 

  • Tyson PD (1986) Climatic change and variability in southern Africa. Oxford University Press, Cape Town

  • Udvardy MDF (1975) A classification of the biogeographical provinces of the world. IUCN Occasional Papers 18:1–50

    Google Scholar 

  • Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecology 74:2003–2010

    Google Scholar 

  • Viljoen S (1985) Comparative thermoregulatory adaptations of southern African tree squirrels from four different habitats. S Afr J Zool 20:28–32

    Google Scholar 

  • Wang DH, Wang YS, Wang ZW (2000) Metabolism and thermoregulation in the Mongolian gerbil Meriones unguiculatus. Acta Theriol 45:183–192

    Article  CAS  Google Scholar 

  • Watts CHS, Baverstock PR (1995a) Evolution in some African Murinae (Rodentia) assessed by microcomplement fixation of albumin. J Afr Zool 109:423–433

    Google Scholar 

  • Watts CHS, Baverstock PR (1995b) Evolution in the Murinae (Rodentia) assessed by microcomplement fixation of albumin. Aust J Zool 43:105–118

    CAS  Google Scholar 

  • Watts CHS,Baverstock PR (1996) Phylogeny and biogeography of some Indo-Australian murid rodents. In: Kitchener DJ, Suyanto A (eds) Proceedings of the first international conference on eastern Indonesian-Australian vertebrate fauna. Manado, Indonesia, November 22–26, 1994

  • Weiner J, Heldmaier G (1987) Metabolism and thermoregulation in two races of Djungarian hamsters: Phodopus sungorus sungorus and P.s. campbelli. Comp Biochem Physiol A 86:639–642

    CAS  PubMed  Google Scholar 

  • Whitford WG, Conley MI (1971) Oxygen consumption and water matabolism in a carnivorous mouse. Comp Biochem Physiol A 40:797–803

    CAS  PubMed  Google Scholar 

  • Whittington-Jones CA, Brown CR (1999) Thermoregulatory capabilities of the woodland dormouse, Graphiurus murinus. S Afr J Zool 34:34–38

    Google Scholar 

  • Whittow GC, Gould E (1976) Body temperature and oxygen consumption of the pentail tree shrew (Ptilocerus lowii). J Mamm 57:754–756

    CAS  Google Scholar 

  • Wich SA, VanSchaik CP (2000) The impact of El Niño on mast fruiting in Sumatra and elsewhere in Malesia. J Trop Ecol 16:563–577

    Article  Google Scholar 

  • Wilson DE, Reeder DM (1993) Mammal species of the world. Washington, Smithsonian Institution Press

  • Withers PC (1992) Comparative animal physiology. Saunders College, Orlando

  • Withers PC, Richardson KC, Wooller RD (1990) Metabolic physiology of euthermic and torpid honey possums, Tarsipes rostratus. Aust J Zool 37:685–693

    Google Scholar 

  • Wolf CM, Garland T, Griffith B (2001) Predictors of avian and mammalian translocation success: reanalysis with phylogenetically independent contrasts. Biol Conserv 86:243–255

    Google Scholar 

  • Worthen GL, Kilgore DL (1981) Metabolic rate of pine marten in relation to air temperature. J Mamm 62:624–628

    Google Scholar 

  • Wunder BA (1970) Temperature regulation and the effects of water restriction on Merriam's chipmunk Eutamias merriami. Comp Biochem Physiol 33:385–403

    CAS  PubMed  Google Scholar 

  • Wunder BA, Dobkin DS, Gettinger RD (1977) Shifts of thermogenesis in the prairie vole (Microtus ochrogaster): strategies for survival in a seasonal environment. Oecologia 29:11–26

    Google Scholar 

  • Yousef MK, Johnson HD (1975) Thyroid activity in desert rodents: a mechanism for lowered metabolic rate. Am J Physiol 229:427–430

    CAS  PubMed  Google Scholar 

  • Yousef MK, Johnson HD, Bradley WG, Seif SM (1974) Tritiated water-turnover rate in rodents: desert and mountain. Physiol Zool 47:153–162

    Google Scholar 

Download references

Acknowledgements

I am very grateful to Ted Garland for advice on PDAP, Steven Piper for statistical advice, and Scott Steppan for kindly providing unpublished data on Sciurid phylogeny. Useful suggestions from two anonymous referees allowed me to provide a more objective interpretation of my analyses. Thank you. A core-rolling NRF Grant and a University of Natal Research Grant financed this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Lovegrove.

Additional information

Communicated by G. Heldmaier

Appendices

Appendix A

Data for the BMR, T b and C of 267 mammals <1 kg were obtained from the literature as shown in Table 3

Table 3. Physiological and climate data for 267 small mammals (<1 kg). Taxonomic nomenclature of Species column follows Wilson and Reeder (1993); some species names therefore do not follow that of the publication source. The Weather station code is assigned by the National Climatic Data Center (NCDC) in Asheville, NC. "T"=temperature stations, "R"=rainfall stations. The zoogeographical zones (Zone column) follow Udvardy (1975); af=Afrotropical, au=Australasia, im=Indomalaya, na=Nearctic, nt=Neotropical, pa=Palaearctic. Minimum thermal conductance (C) was calculated as the slope of the regression of minimum oxygen consumption and ambient temperature below thermoneutrality. [E east (longitude), N north (latitude), S south (latitude), T mean mean yearly month temperature over all years, W west (longitude)]

Appendix B

Phylogeny of small mammals (<1 kg) from six zoogeographical zones (Figs. 7, 8, 9, 10). The branch lengths were calculated arbitrarily following Pagel (1992). Taxonomic nomenclature follows Wilson and Reeder (1993). For eutherian mammals I followed the inter-ordinal relationships of Murphy et al. (2001). I used Kirsch et al. (1997) for metatherian species relationships. Major within-order sources were: Carnivora (Beninda-Emonds et al. 1999), Insectivora (Ruedi 1998), Lagomorpha (Halanych and Robinson 1997, 1999; Halanych et al. 1999), Macroscelidea (Raman and Perrin 1997), and Primates (DelPero et al. 2000; Purvis 1995), Rodentia: For major relationships among rodent families I followed Catzeflis et al. (1995), Nedbal et al. (1994), Robinson et al. (1997), Huchon et al. (1999) and Michaux and Catzeflis (2000). Relationships among families of the Sciuridae were kindly provided by S.J. Steppan (personal communication). Species relationships of the Sciuridae were obtained from Nadler et al. (1982, 1984) and Levenson et al. (1985). Other rodent species sources were: Muridae (Qumsiyeh 1986; Modi 1987; Chaline and Graf 1988; Qumsiyeh et al. 1991; Rogers and Engstrom 1992; Smith and Patton 1993; Planz et al. 1996; Watts and Baverstock 1995a, 1995b, 1996; Steppan 1995, Bellinvia et al. 1999; Barome et al.2000; Conroy and Cook 2000; Martin et al. 2000; Tiemann-Boege et al. 2000; Bell et al. 2001), Heteromyidae (Rogers 1990; Riddle 1995)

Fig. 7.
figure 7

Clade A: Marsupials, Manoscelidae, Carnivora, and Insectivora

Fig. 8.
figure 8

Clade B: Scantentia, Primates, Lagomorpha, and some rodents

Fig. 9.
figure 9

Clade C: Rodentia (Dipodidae, Petromyscinae, Mystromyinae, Dentromurinae, Gerbillinae, Murinae)

Fig. 10.
figure 10

Clade D: Rodentia (Cricetinae, Arvocolinae, Sigmodontinae, Neotominae)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovegrove, B.G. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. J Comp Physiol B 173, 87–112 (2003). https://doi.org/10.1007/s00360-002-0309-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-002-0309-5

Keywords

Navigation