Skip to main content

Advertisement

Log in

Integrated system approach to dark fermentative biohydrogen production for enhanced yield, energy efficiency and substrate recovery

  • review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The challenges of climate change, dwindling fossil reserves, and environmental pollution have fuelled the need to search for clean and sustainable energy resources. The process of biohydrogen has been highlighted as a propitious alternative energy of the future because it has many socio-economic benefits such as non-polluting features, the ability to use diverse feedstocks including waste materials, the process uses various microorganisms, and it is the simplest method of producing hydrogen. However, the establishment of a biohydrogen driven economy has been hindered by low process yields due to the accumulation of inhibitory products. Over the past few years, various optimization methods have been used in literature. Among these, integration of bioprocesses is gaining increasing prominence as an effective approach that could be used to achieve a theoretical yield of 4 mol H2 mol−1 glucose. In batch integrated systems, dark fermentation is used as a primary process for conversion of substrates into biohydrogen, carbon dioxide, and volatile fatty acids. This is followed by a secondary anaerobic process for further biohydrogen conversion efficiency. This review discusses the current challenges facing scale-up studies in dark fermentation process. It elucidates the potential of batch integrated systems in biohydrogen process development. Furthermore, it explores the various integrated fermentation techniques that are employed in biohydrogen process development. Finally, the review concludes with recommendations on improvement of these integrated processes for enhanced biohydrogen yields which could pave a way for the establishment of a large-scale biohydrogen production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted and modified from Abo-Hashesh et al. (2011) and Chen et al. (2008)

Fig. 3

Adapted and modified from Abo-Hashesh et al. (2011) and Chen et al. (2008)

Fig. 4

Adapted and modified from Escapa et al. (2016) and Poggi-Varaldo et al. (2014)

Fig. 5

Adapted and modified from Dussadee et al. (2016)

Similar content being viewed by others

References

  • Abd-Alla MH, Morsy FM, El-Enany AWE (2011) Hydrogen production from rotten dates by sequential three stages fermentation. Int J Hydrog Energy 36(21):13518–13527

    Article  CAS  Google Scholar 

  • Abo-Hashesh M, Ghosh G, Tourigny A, Taous A, Hallenbeck PC (2011) Single stage photofermentative hydrogen production from glucose: an attractive alternative to two stage photofermentation or co-culture approaches. Int J Hydrog Energy 36(21):13889–13895

    Article  CAS  Google Scholar 

  • Achinas S, Achinas V, Euverink GJW (2016) A technological overview of biogas production from biowaste. Engineering 3(3):299–307

    Article  Google Scholar 

  • Adessi A, Venturi M, Candeliere F, Galli V, Granchi L, De Philippis R (2018) Bread wastes to energy: sequential lactic and photo-fermentation for hydrogen production. Int J Hydrog Energy 43:9569–9576

    Article  CAS  Google Scholar 

  • Afsar N, Ozgur E, Gurgan M, Akkose S, Yucel M, Gunduz U, Eroglu I (2011) Hydrogen productivity of photosynthetic bacteria on dark fermenter effluent of potato steam peels hydrolysate. Int J Hydrog Energy 36(1):432–438

    Article  CAS  Google Scholar 

  • Akinbomi J, Wikandari R, Taherzadeh MJ (2015) Evaluation of fermentative hydrogen production from single and mixed fruit wastes. Energies 8:4253–4272

    Article  CAS  Google Scholar 

  • Alalayah WM, Kalil MS, Jahim JM, Jaapar SZS, Alauj NM (2009) Bio-hydrogen production using a two-stage fermentation process. Pak J Biol Sci 12(22):1462–1467

    Article  CAS  Google Scholar 

  • Alepu OE, Li Z, Ikhumhen HO, Kalakodio L, Wang K, Segun A (2016) Effect of hydraulic retention time on anaerobic digestion of municipal sludge. Int J Waste Resour 6:231

    Article  Google Scholar 

  • Alexandropoulou M, Antonopoulou G, Trably E, Carrere H, Lyberatos G (2018) Continuous biohydrogen production from a food industry waste: influence of operational parameters and microbial community analysis. J Clean Prod 174:1054–1063

    Article  CAS  Google Scholar 

  • Antonopoulou G, Stamatelatou K, Venetsaneas N, Kornaros M, Lyberatos G (2008) Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind Eng Chem Res 47(15):5227–5233

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2010) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int J Hydrog Energy 35(4):1604–1612

    Article  CAS  Google Scholar 

  • Argun H, Kargi F (2011) Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. Int J Hydrog Energy 36(13):7443–7459

    Article  CAS  Google Scholar 

  • Aruwajoye GS, Faloye FD, Gueguim Kana EB (2017) Soaking assisted thermal pretreatment of cassava peels wastes for fermentable sugar production: process modelling and optimization. Energy Convers Manag 150:558–566

    Article  CAS  Google Scholar 

  • Asada Y, Tokumoto M, Aihara Y, Oku M, Ishimi K, Wakayama T, Miyake J, Tomiyama M, Kohno H (2006) Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int J Hydrog Energy 31(11):1509–1513

    Article  CAS  Google Scholar 

  • Asadi N, Zilouei H (2017) Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes. Bioresour Technol 227:335–344

    Article  CAS  Google Scholar 

  • Assawamongkholsiri T, Reungsang A (2015) Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electr J Biotechnol 18(3):221–230

    Article  CAS  Google Scholar 

  • Azbar N, Çetinkaya Dokgöz F, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrogen Energy 34(17):7441–7447

    Article  CAS  Google Scholar 

  • Bala Amutha K, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102(1):194–199

    Article  CAS  Google Scholar 

  • Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14:473–498

    Article  CAS  Google Scholar 

  • Bhutto AW, Qureshi K, Harijan K, Abro R, Abbas T, Bazmi AA, Karim S, Yu G (2017) Insight into progress in pre-treatment of lignocellulosic biomass. Energy 122:724–745

    Article  CAS  Google Scholar 

  • Boone DR, Chynoweth DP, Mah RA, Smith PH, Wilkie AC (1993) Ecology and microbiology of biogasification. Biomass Bioenergy 5(3–4):191–202

    Article  CAS  Google Scholar 

  • Bryant M, Wolin E, Wolin M, Wolfe R (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59(1):20–31

    CAS  Google Scholar 

  • Buitron G, Kumar G, Martinez-Arce A, Moreno G (2014) Hydrogen and methane production via a two-stage processes (H2-SBR + CH4-UASB) using tequila vinasses. Int J Hydrog Energy 39(33):19249–19255

    Article  CAS  Google Scholar 

  • Cai M, Chua H, Zhao Q, Sin NS, Ren J (2009) Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour Technol 100(3):1399–1405

    Article  CAS  Google Scholar 

  • Calusinska M, Hamilton C, Monsieurs P, Mathy G, Leys N, Franck F, Joris B, Thornat P, Hiligsmann S, Wilmotte A (2015) Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009. Biotechnol Biofuels 8:27

    Article  CAS  Google Scholar 

  • Carrillo-Reyes J, Buitron G (2016) Biohydrogen and methane production via a two-step process using an acid pretreated native microalgae consortium. Bioresour Technol 221:324–330

    Article  CAS  Google Scholar 

  • Cavinato C, Bolzonella D, Eusebi AL, Pavan P (2009) Bio-hythane production by thermophilic two-phase anaerobic digestion of organic fraction of municipal solid waste: preliminary results. AIDIC Conf Ser 9:61–66

    Google Scholar 

  • Chandra R, Nikhil GN, Venkata Mohan S (2015) Single-stage operation of hybrid dark-photo fermentation to enhance biohydrogen production through regulation of system redox condition: evaluation with real-field wastewater. Int J Mol Sci 16(5):9540–9556

    Article  CAS  Google Scholar 

  • Chen WH, Jian ZC (2013) Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations. Chemosphere 93(4):597–603

    Article  CAS  Google Scholar 

  • Chen CY, Yang MH, Yeha KL, Liu CH, Chang JS (2008) Biohydrogen production using sequential two-stage dark and pho fermentation processes. Int J Hydrog Energy 33(18):4755–4762

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL, Lo YC, Wang HM, Chang JS (2010) Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. Int J Hydrog Energy 35(24):13356–13364

    Article  CAS  Google Scholar 

  • Chen WH, Chen SY, Chao SJ, Jian ZC (2011) Butanol production from the effluent of hydrogen fermentation. Water Sci Technol 63(6):1236–1240

    Article  CAS  Google Scholar 

  • Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S (2017) A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Proc Technol 160:196–206

    Article  CAS  Google Scholar 

  • Cheng J, Su H, Zhou J, Song W, Cen K (2011) Microwave assisted alkali pretreatment of rice straw to promote enzymatic hydrolysis and hydrogen production in dark- and photofermentation. Int J Hydrog Energy 36(3):2093–2101

    Article  CAS  Google Scholar 

  • Chookaew T, O-Thong S, Prasertsan P (2015) Biohydrogen production from crude glycerol by two stage of dark and photo fermentation. Int J Hydrog Energy 40(24):7433–7438

    Article  CAS  Google Scholar 

  • Chu CY, Wang ZF (2017) Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. Int J Hydrog Energy 42:30591–30598

    Article  CAS  Google Scholar 

  • Chu CF, Li YY, Xu KQ, Ebie Y, Inamori Y, Kong HN (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrog Energy 33(18):4739–4746

    Article  CAS  Google Scholar 

  • Clark IC, Zhang RH, Upadhyaya KS (2012) The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. Int J Hydrogen Energy 37(15):11504–11513

    Article  CAS  Google Scholar 

  • Cooney M, Maynard N, Cannizzar C, Benemann J (2007) Two-phase anaerobic digestion for production of hydrogen–methane mixtures. Bioresour Technol 98(14):2641–2651

    Article  CAS  Google Scholar 

  • Csutak O, Sarbu I (2018) Genetically modified microorganisms. In: Holban AM, Grumezescu A (eds) Genetically engineered foods. Academic Press, Cambridge, pp 143–175

    Chapter  Google Scholar 

  • Das S, Chaudhari S (2015) Effect of reactor configuration on performance during anaerobic treatment of low strength wastewater. Environ Technol 36(18):2312–2318

    Article  CAS  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26(1):13–28

    Article  CAS  Google Scholar 

  • Das D, Khanna N, Veziroglu TN (2008) Recent development in biological hydrogen production processes. Chem Ind Chem Eng Quart 14(2):57–67

    Article  CAS  Google Scholar 

  • Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111

    Article  CAS  Google Scholar 

  • Dinesh GK, Chauhan R, Chakma S (2018) Influence and strategies for enhanced biohydrogen production from food waste. Renew Sustain Energy Rev 92:807–822

    Article  CAS  Google Scholar 

  • Dong L, Cao G, Zhao L, Liu B, Ren N (2018) Alkali/urea pretreatment of rice straw at low temperature for enhanced biological hydrogen production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2018.05.055

    Article  Google Scholar 

  • Dussadee N, Unpaprom Y, Ramaraj R (2016) Grass silage for biogas production. In: Advances in silage production and utilization. InTech, p 22

  • Elsharnouby O, Hafez H, Nakhla G, El Nggar MH (2013) A critical literature review on biohydrogen production by pure cultures. Int J Hydrog Energy 38(12):4945–4966

    Article  CAS  Google Scholar 

  • Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41(30):12772–12798

    Article  CAS  Google Scholar 

  • Escapa A, Mateos R, Martinez EJ, Blanes J (2016) Microbial electrolysis cells: an emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew Sustain Energy Rev 55:942–956

    Article  CAS  Google Scholar 

  • Estevam A, Arantes MK, Andrigheto C, Fiorini A, da Silva EA, Alves HJ (2018) Production of biohydrogen from brewery wastewater using Klebsiella pneumoniae isolated from the environment. Int J Hydrog Energy 43:4276–4283

    Article  CAS  Google Scholar 

  • Fang HHP, Zhu H, Zhang T (2006) Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrog Energy 31(15):2223–2230

    Article  CAS  Google Scholar 

  • Fei Q, Chang HN, Shang L, Choi J, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102(3):2695–2701

    Article  CAS  Google Scholar 

  • Fradler KR, Kim JR, Shipley G, Massanet-Nicolau J, Dinsdale RM, Guwy AJ, Premier GC (2014) Operation of a bioelectrochemical system as a polishing stage for the effluent from a two-stage biohydrogen and biomethane production process. Biochem Eng J 85:125–131

    Article  CAS  Google Scholar 

  • Garcia J (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Lett 87(3–4):297–308

    Article  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Ghosh D, Sobro IF, Hallenbeck PC (2012) Optimization of the hydrogen yield from single-stage photofermentation of glucose by rhodobacter capsulatus jp91 using response surface methodology. Bioresour Technol 123:199–206

    Article  CAS  Google Scholar 

  • Gottardo M, Micolucci F, Mattioli A, Faggian S, Cavinato C, Pavan P (2015) Hydrogen and methane production from biowaste and sewage sludge by two phases anaerobic codigestion. Chem Eng Trans 43:379–384

    Google Scholar 

  • Gunay A, Karadag D (2015) Recent developments in the anaerobic digestion of olive mill effluents. Process Biochem 50(11):1893–1903

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Benemann JR (2002) Biological hydrogen production; fundamentals and limiting processes. Int J Hydrog Energy 27(11):1185–1193

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27(5):287–297

    Article  CAS  Google Scholar 

  • Han H, Wei L, Liu B, Yang H, Shen J (2012) Optimization of biohydrogen production from soybean straw using anaerobic mixed bacteria. Int J Hydrog Energy 37(17):13200–13208

    Article  CAS  Google Scholar 

  • Hay JX, Wu TY, Juan JC, Md Jahim J (2017) Effect of adding brewery wastewater to pulp and paper mill effluent to enhance the photofermentation process: wastewater characteristics, biohydrogen production, overall performance, and kinetic modeling. Environ Sci Pollut Res 24(11):10354–10363

    Article  CAS  Google Scholar 

  • He X, Wareham DG (2009) The use of naturally generated volatile fatty acids for herbicide removal via denitrification. J Environ Sci Health Part B 44(3):302–310

    Article  CAS  Google Scholar 

  • Hindatu Y, Annuara MSM, Gumel AM (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sustain Energy Rev 73:236–248

    Article  CAS  Google Scholar 

  • Hsieh PH, Lai YC, Chen KY, Hung CH (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. Int J Hydrog Energy 41(46):21685–21691

    Article  CAS  Google Scholar 

  • Hu BB, Lic MY, Wang YT, Zhu MJ (2018) High-yield biohydrogen production from non-detoxified sugarcane bagasse: fermentation strategy and mechanism. Chem Eng J 335:979–987

    Article  CAS  Google Scholar 

  • Ike A, Murakawa T, Kawaguchi H, Hirata K, Miyamoto K (1999) Photoproduction of hydrogen from raw starch using a halophilic bacterial community. J Biosci Bioeng 88(1):72–77

    Article  CAS  Google Scholar 

  • Intanoo P, Rangsanvigit P, Malakul P, Chavadej S (2014) Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation. Bioresour Technol 173:256–265

    Article  CAS  Google Scholar 

  • Jensen PD, Yap SD, Boyle-Gotla A, Janoschka J, Carney C, Pidou M, Batstone DJ (2015) Anaerobic membrane bioreactors enable high rate treatment of slaughterhouse wastewater. Biochem Eng J 97:132–141

    Article  CAS  Google Scholar 

  • Jha P, Schmidt S (2016) Reappraisal of chemical interference in anaerobic digestion processes. Renew Sustain Energy Rev 75:954–971

    Article  Google Scholar 

  • Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AA (2014) A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472

    Article  CAS  Google Scholar 

  • Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex Eng J 55(1):427–443

    Article  Google Scholar 

  • Kawaguchi H, Hashimoto H, Hirata K, Miyamoto K (2001) H2 production from algal by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91(3):277–282

    Article  CAS  Google Scholar 

  • Keskin T, Arslan K, Abubackar HN, Vural C, Eroglu D, Karaalp D, Yanik J, Ozdemir G, Azbar N (2018) Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes. Int J Hydrog Energy 43:10666–10677

    Article  CAS  Google Scholar 

  • Khanna N, Das D (2013) Biohydrogen production by dark fermentation. WIRES Energy Environ 2(4):401–421

    Article  CAS  Google Scholar 

  • Khanna N, Ghosh AK, Huntemann M et al (2013) Complete genome sequence of Enterobacter sp. IIT-BT 08: a potential microbial strain for high rate hydrogen production. Stand Genomic Sci 9(2):359–369

    Article  CAS  Google Scholar 

  • Khetkorn W, Rastogi RP, Incharoensakdi A, Lindblad P, Madamwar D, Pandey A, Larroche C (2017) Microalgal hydrogen production—a review. Bioresour Technol 243:1194–1206

    Article  CAS  Google Scholar 

  • Khongkliang P, Kongjanb P, O-Thonga S (2015) Hydrogen and methane production from starch processing wastewater by thermophilic two-stage anaerobic digestion. Energy Proc 79:827–832

    Article  CAS  Google Scholar 

  • Kim T, An J, Jang JK, Chang IS (2015) Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresour Technol 195:217–222

    Article  CAS  Google Scholar 

  • Kisielewska M, Wysocka I, Rynkiewicz MR (2014) Continuous biohydrogen and biomethane production from whey permeate in a two-stage fermentation process. Environ Prog Sustain Energy 33(4):1411–1418

    CAS  Google Scholar 

  • Kongjan P, O-Thong S, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102(5):4028–4035

    Article  CAS  Google Scholar 

  • Kongjan P, Jariyaboon R, O-Thong S (2014) Anaerobic digestion of skim latex serum (SLS) for hydrogen and methane production using a two stage process in a series of up-flow anaerobic sludge blanket (UASB) reactor. Int J Hydrog Energy 39(33):19343–19348

    Article  CAS  Google Scholar 

  • Kothari R, Kumar V, Pathak VV, Ahmad S, Aoyi O, Tyagi VV (2017) A critical review on factors influencing fermentative hydrogen production. Front Biosci 22:1195–1220

    Article  CAS  Google Scholar 

  • Krishna SV, Kumar PK, Chaitanya N, Bhagawan D, Himabindu V, Lakshmi Narasu ML (2017) Biohydrogen production from brewery effluent in a batch and continuous reactor with anaerobic mixed microbial consortia. Biofuels 8(6):701–707

    Article  CAS  Google Scholar 

  • Kumar G, Lin CY (2013) Bioconversion of de-oiled Jatropha Waste (DJW) to hydrogen and methane gas by anaerobic fermentation: influence of substrate concentration, temperature and pH. Int J Hydrog Energy 38(1):63–72

    Article  CAS  Google Scholar 

  • Kumar G, Bakonyi P, Kobayashi T, Xu KQ, Sivagurunathan P, Kim SH, Buitron G, Nemestóthy KFB (2016) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sustain Energy Rev 57:879–891

    Article  CAS  Google Scholar 

  • Kurniawan A, Kwon SW, Shin JH, Hur J, Cho J (2016) Acid fermentation process combined with post denitrification for the treatment of primary sludge and wastewater with high strength nitrate. Water 8(4):117

    Article  CAS  Google Scholar 

  • Kvesitadze G, Sadunishvili T, Dudauri T, Zakariashvili N, Partskhaladze G, Ugrekhelidze V, Tsiklauri G, Metreveli B, Jobava M (2012) Two-stage anaerobic process for bio-hydrogen and bio-methane combined production from biodegradable solid wastes. Energy 37(1):94–102

    CAS  Google Scholar 

  • Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34(15):6201–6621

    Article  CAS  Google Scholar 

  • Lappa K, Kandylis P, Bastas N, Klaoudatos S, Athanasopoulos N, Bekatorou A, Kanellaki M, Koutinas AA (2015) New generation biofuel: continuous acidogenesis of sucrose–raffinose mixture simulating vinasse is promoted by γ-alumina pellets. Biotechnol Biofuels 8:74

    Article  CAS  Google Scholar 

  • Laurinavichene TV, Belokopytov BF, Laurinavichius KS, Tekucheva DN, Seibert M, Tsygankov AA (2010) Towards the integration of dark- and photo-fermentative waste treatment. 3. Potato as substrate for sequential dark fermentation and light-driven H2 production. Int J Hydrog Energy 35(16):8536–8543

    Article  CAS  Google Scholar 

  • Leano EP, Babel S (2012) The influence of enzyme and surfactant on biohydrogen production and electricity generation using palm oil mill effluent. J Clean Prod 31:91–99

    Article  CAS  Google Scholar 

  • Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrog Energy 27(11–12):1309–1313

    Article  CAS  Google Scholar 

  • Lee DY, Ebie Y, Xu KQ, Li YY, Inamori Y (2010) Continuous H2 and CH4 production from high-solid food waste in the two-stage thermophilic fermentation process with the recirculation of digester sludge. Bioresour Technol 101(1):S42–S47

    Article  CAS  Google Scholar 

  • Leite J, Pozzi E, Pelizer L, Zaiat M, Barboza M (2013) Use of volatile fatty acids salts in the production of xanthan gum. Electr J Biotechnol 16(2):1–6

    Google Scholar 

  • Lim SJ, Choi DW, Lee WG, Kwon S, Chang HN (2000) Volatile fatty acids production from food wastes and its application to biological nutrient removal. Bioprocess Eng 22(6):543–545

    Article  CAS  Google Scholar 

  • Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36(13):3203–3210

    Article  CAS  Google Scholar 

  • Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  CAS  Google Scholar 

  • Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40(11):2230–2236

    Article  CAS  Google Scholar 

  • Liu Q, Zhang X, Zhou Y, Zhao A, Chen S, Qian G, Xu ZP (2011) Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. Bioresour Technol 102(18):8661–8668

    Article  CAS  Google Scholar 

  • Liu W, Huang S, Zhou A, Zhou G, Ren N, Wang A, Zhuang G (2012) Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge. Int J Hydrog Energy 37(18):13859–13864

    Article  CAS  Google Scholar 

  • Liu BF, Xie GJ, Wang RQ, Xing DF, Ding J, Zhou X, Ren HY, Ma C, Ren NQ (2015) Simultaneous hydrogen and ethanol production from cascade utilization of mono-substrate in integrated dark and photo-fermentative reactor. Biotechnol Biofuels 8:8

    Article  Google Scholar 

  • Lo YC, Chen SD, Chen CY, Huang TI, Lin CY, Chang JS (2008) Combining enzymatic hydrolysis and dark-photo fermentation processes for hydrogen production from starch feedstock: a feasibility study. Int J Hydrog Energy 33(19):5224–5233

    Article  CAS  Google Scholar 

  • Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels TJA, Jeremiasse AW (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640

    Article  CAS  Google Scholar 

  • Lyberatos G, Skiadas I (1999) Modelling of anaerobic digestion: a review. GlobalNEST Int J 1(2):63–76

    Google Scholar 

  • Ma S, Wang H, Wang Y, Bu H, Bai J (2011) Bio-hydrogen production from cornstalk wastes by orthogonal design method. Renew Energy 36:709–713

    Article  CAS  Google Scholar 

  • Ma Z, Li C, Su H (2017) Dark bio-hydrogen fermentation by an immobilized mixed culture of Bacillus cereus and Brevumdimonas naejangsanensis. Renew Energy 105:458–464

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  • Martin PCB, Schlienz M, Greger M (2017) Production of bio-hydrogen and methane during semi-continuous digestion of maize silage in a two-stage system. Int J Hydrog Energy 42(9):5768–5779

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Macé S, Llabrés P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74(1):3–16

    Article  CAS  Google Scholar 

  • Meher Kotay S, Das D (2010) Microbial hydrogen from sewage sludge bioaugmented with a constructed microbial consortium. Int J Hydrog Energy 35(19):10653–10659

    Article  CAS  Google Scholar 

  • Mishra P, Das D (2014) Biohydrogen production from Enterobacter cloacae IIT-BT 08 using distillery effluent. Int J Hydrog Energy 39(14):7496–7502

    Article  CAS  Google Scholar 

  • Mohanakrishna G, Venkata Mohan S, Sarma PN (2010) Utilizing acid-rich effluents of fermentative hydrogen production process as substrate for harnessing bioelectricity: an integrative approach. Int J Hydrog Energy 35(8):3440–3449

    Article  CAS  Google Scholar 

  • Moodley P, Gueguim Kana EB (2015) Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int J Hydrog Energy 40(10):3859–3867

    Article  CAS  Google Scholar 

  • Moreno R, Escapa A, Cara J, Carracedo B, Gomez X (2015) A two-stage for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. Int J Hydrog Energy 40(1):168–175

    Article  CAS  Google Scholar 

  • Morimoto K, Kimura T, Sakka K, Ohmiya K (2005) Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett 246:229–234

    Article  CAS  Google Scholar 

  • Muharja M, Junianti F, Ranggina D, Nurtono T, Widjaja A (2018) An integrated green process: subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk. Bioresour Technol 249:268–275

    Article  CAS  Google Scholar 

  • Nath K, Kumar A, Das D (2005) Hydrogen production by Rhodobacter sphaeroides strain O.U.001 using spent media of Enterobacter cloacae strain DM11. Appl Microbiol Biotechnol 68(4):533–541

    Article  CAS  Google Scholar 

  • Noparat P, Prasertsan P, Sompong O (2012) Potential for using enriched cultures and thermotolerant bacterial isolates for production of biohydrogen from oil palm sap and microbial community analysis. Int J Hydrog Energy 37(21):16412–16420

    Article  CAS  Google Scholar 

  • Odom JM, Wall JD (1983) Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Appl Environ Microbiol 45(4):1300–1305

    CAS  Google Scholar 

  • Oh SE, Lyer P, Bruns MA, Logan BE (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87(1):199–227

    Article  CAS  Google Scholar 

  • Oliveira RBA, Margalho LP, Nascimento JS, Costa LEO, Portela JB, Cruz AG, Sant’Ana AS (2016) Processed cheese contamination by spore-forming bacteria: a review of sources, routes, fate during processing and control. Trends Food Sci Technol 57:11–19

    Article  CAS  Google Scholar 

  • Ortega-Martinez A, Juarez-Lopez K, Solorza-Feria O, Ponce-Noyola MT, Ríos-Leal M, Rinderknecht-Seijas NF, Poggi-Varaldo HM (2012) Parallel connection and sandwich electrodes lower the internal resistance in a microbial fuel cell. J New Mater Electrochem Syst 15(3):187–194

    Article  CAS  Google Scholar 

  • O-Thong S, Khongkliang P, Mamimin C, Singkhala A, Prasertsan P, Birkeland NK (2017) Draft genome sequence of Thermoanaerobacterium sp. strain PSU-2 isolated from thermophilic hydrogen producing reactor. Genomics Data 12:49–51

    Article  Google Scholar 

  • Ozgur E, Mars AD, Peksel B, Louwerse A, Yucel M, Gunduz U, Classen PAM, Eroglu I (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrog Energy 35(2):511–517

    Article  CAS  Google Scholar 

  • Ozmihci S, Kargi F (2010) Bio-hydrogen production by photo-fermentation of dark fermentation effluent with intermittent feeding and effluent removal. Int J Hydrog Energy 35(13):6674–6680

    Article  CAS  Google Scholar 

  • Pachapur VL, Sarma SJ, Brar SK, Bihan YL, Soccol CR, Buelna G, Verma M (2015) Co-culture strategies for increased biohydrogen production. Int J Energy Res 39(11):1479–1500

    Article  CAS  Google Scholar 

  • Park MJ, Jo JH, Park D, Lee DS, Park JM (2009) Comprehensive study on a two-stage anaerobic digestion process for the sequential production of hydrogen and methane from cost-effective molasses. Int J Hydrog Energy 35(12):6194–6202

    Article  CAS  Google Scholar 

  • Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53(1):3–10

    Article  CAS  Google Scholar 

  • Pepè Sciarria T, Tenca A, D’Epifanio A, Mecheri B, Merlino G, Barbato M, Borin S, Licoccia S, Garavaglia V, Adani F (2013) Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell. Bioresour Technol 147:246–253

    Article  CAS  Google Scholar 

  • Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15:16

    Article  Google Scholar 

  • Perera KRJ, Arudchelvam Y, Gadhamshetty V, Nirmalakhandan N (2012) Modeling and simulation of net energy gain by dark fermentation. Int J Hydrog Energy 37(3):2267–2272

    Article  CAS  Google Scholar 

  • Poggi-Varaldo HM, Munoz-Paez KM, Escamilla-Alvarado C, Robledo-Narvaez PN, Ponce-Noyola MT, Calva-Calva G, Rios-Leal E, Galindez-Mayer J, Estrada-Vazquez C, Ortega-Clemente A, Rinderknecht-Seijas NF (2014) Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review. Waste Manag Res 32(5):353–365

    Article  CAS  Google Scholar 

  • Poleto L, Souza P, Magrini FE, Beal LL, Torres APR, de Sousa MP, Laurino JP, Paesi S (2016) Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Int J Hydrog Energy 41:4374–4381

    Article  CAS  Google Scholar 

  • Prakash D, Verma S, Bhatia R, Tiwary BN (2011) Risks and precautions of genetically modified organisms. ISRN Ecol, pp 1–13

  • Rai PJ, Singh SP (2016) Integrated dark- and photo-fermentation: recent advances and provisions for improvement. Int J Hydrog Energy 41(44):19957–19971

    Article  CAS  Google Scholar 

  • Rai PK, Singh SP, Asthana RK (2012) Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Appl Biochem Biotechnol 167(6):1540–15499

    Article  CAS  Google Scholar 

  • Rai PJ, Singh SP, Asthana RK, Singh S (2014) Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour Technol 152:140–146

    Article  CAS  Google Scholar 

  • Ramos LR, Silva EL (2018) Continuous hydrogen production from cofermentation of sugarcane vinasse and cheese whey in a thermophilic anaerobic fluidized bed reactor. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2018.05.070

    Article  Google Scholar 

  • Rivera I, Buitron G, Bakonyi P, Nemestóthy N, Bélafi-Bakó K (2015) Hydrogen production in a microbial electrolysis cell fed with a dark fermentation effluent. J Appl Electrochem 45(11):1223–1229

    Article  CAS  Google Scholar 

  • Rorke D, Gueguim Kana EB (2016) Biohydrogen process development on waste sorghum (Sorghum bicolar) leaves: optimization of saccharification, hydrogen production and preliminary scale up. Int J Hydrog Energy 41(30):12941–12952

    Article  CAS  Google Scholar 

  • Rosales-Colunga LM, Rodriguez ADL (2015) Escherichia coli and its application to biohydrogen production. Rev Environ Sci Biotechnol 14(1):123–135

    Article  CAS  Google Scholar 

  • Rozendal RA, Buisman CJN (2005) Process for producing hydrogen. Patent WO2005005981

  • Sagnak R, Kargi F (2011) Photo-fermentative hydrogen gas production from dark fermentation effluent of acid hydrolyzed wheat starch with periodic feeding. Int J Hydrog Energy 36(7):4348–4353

    Article  CAS  Google Scholar 

  • Saidi R, Liebgott PP, Gannoun H, Gaida LB, Miladi B, Hamdi M, Bouallagui H, Auria R (2018) Biohydrogen production from hyperthermophilic anaerobic digestion of fruit and vegetable wastes in seawater: simplification of the culture medium of Thermotoga maritime. Waste Manag 71:474–484

    Article  CAS  Google Scholar 

  • Salem AH, Brunstermann R, Mietzel T, Widmann R (2018) Effect of pre-treatment and hydraulic retention time on biohydrogen production from organic wastes. Int J Hydrog Energy 43:4856–4865

    Article  CAS  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    Article  CAS  Google Scholar 

  • Sárvári Horváth I, Tabatabaei M, Karimi K, Kumar R (2016) Recent updates on biogas production—a review. Biofuel Res J 10:394–402

    Article  Google Scholar 

  • Schievano A, Tenca A, Lonati S, Manzini E, Adani F (2014) Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl Energy 124:335–342

    Article  CAS  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Bio Rev 61(2):262–280

    CAS  Google Scholar 

  • Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustain Chem 2:48–53

    Article  Google Scholar 

  • Sekoai PT (2016) Modelling and optimization of operational setpoint parameters for maximum fermentative biohydrogen using Box–Behnken design. Fermentation 2(3):15

    Article  CAS  Google Scholar 

  • Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 6:223–226

    Article  Google Scholar 

  • Sekoai PT, Daramola MO (2017) The potential of dark fermentative bio-hydrogen production from biowaste effluents in South Africa. IJRER 7(1):359–378

    Google Scholar 

  • Sekoai PT, Gueguim Kana EB (2013a) A two-stage modelling and optimization of biohydrogen production from a mixture of agro-municipal waste. Int J Hydrog Energy 38(1):8657–8663

    Article  CAS  Google Scholar 

  • Sekoai PT, Gueguim Kana EB (2013b) Fermentative biohydrogen modelling and optimization research in light of miniaturized parallel bioreactors. Biotechnol Biotechnol Equip 27(4):3901–3908

    Article  CAS  Google Scholar 

  • Sekoai PT, Gueguim Kana EB (2014) Semi-pilot scale production of hydrogen from organic fraction of solid municipal waste and electricity generation from process effluents. Biomass Bioenergy 60:156–163

    Article  CAS  Google Scholar 

  • Sekoai PT, Yoro KO (2016) Biofuel development Initiatives in Sub-Saharan Africa: opportunities and challenges. Climate 4:1–13

    Article  Google Scholar 

  • Sekoai PT, Yoro KO, Daramola MO (2016) Batch fermentative biohydrogen production process using immobilized sludge from organic solid waste. Environments 3:38

    Article  Google Scholar 

  • Sekoai PT, Awosusi AA, Yoro KO, Singo M, Oloye O, Ayeni AO, Bodunrin M, Daramola MO (2017) Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol 38:157–171

    Article  CAS  Google Scholar 

  • Sewsynker-Sukai Y, Faloye FD, Gueguim Kana EB (2016) Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnol Biotechnol Equip 31(2):221–235

    Article  CAS  Google Scholar 

  • Shah AT, Favaro L, Alibardi L, Cagnin L, Sandon A, Cossu R, Casella S, Basaglia M (2016) Bacillus sp. strains to produce bio-hydrogen from the organic fraction of municipal solid waste. Appl Energy 176:116–124

    Article  CAS  Google Scholar 

  • Shanmugam S, Hari A, Ulaganathan P, Yang F, Krishnaswamy S, Wu YR (2018) Potential of biohydrogen generation using the delignified lignocellulosic biomass by a newly identified thermostable laccase from Trichoderma asperellum strain BPLMBT1. Int J Hydrog Energy 43:3618–3628

    Article  CAS  Google Scholar 

  • Sharma Y, Li B (2010) Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). Int J Hydrog Energy 35(8):3789–3797

    Article  CAS  Google Scholar 

  • Shukla JB, Verma M, Misra AK (2017) Effect of global warming on sea level rise: a modeling study. Ecol Compl 32:99–110

    Article  Google Scholar 

  • Si BC, Li JM, Zhu ZB, Zhang YH, Lu JW, Shen RX, Zhang C, Xing XY, Liu Z (2016) Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Biotechnol Biofuels 9:254

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2009) Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. Int J Hydrog Energy 34(21):8846–8853

    Article  CAS  Google Scholar 

  • Su H, Cheng J, Zhou J, Song W, Cen K (2010) Hydrogen production from water hyacinth through dark- and photo- fermentation. Int J Hydrog Energy 35(17):8929–8937

    Article  CAS  Google Scholar 

  • Sun M, Sheng GP, Zhang L, Xia CR, Mu ZX, Liu XW, Wang HL, Yu HQ, Qi R, Yu T, Yang M (2008) An MEC–MFC coupled system for biohydrogen production from acetate. Environ Sci Technol 42(21):8095–8100

    Article  CAS  Google Scholar 

  • Sun Q, Xiao W, Xi D, Shi J, Yan X, Zhou Z (2010) Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int J Hydrog Energy 35(9):4076–4084

    Article  CAS  Google Scholar 

  • Talukdar PK, Olguín-Araneda V, Alnoman M, Paredes-Sabja D, Sarker MR (2015) Updates on the sporulation process in Clostridium species. Res Microbiol 166(4):225–235

    Article  Google Scholar 

  • Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2007) High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int J Hydrog Energy 32(2):200–206

    Article  CAS  Google Scholar 

  • Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489

    Article  CAS  Google Scholar 

  • Uyar B, Gurgan M, Ozgur E, Gunduz U, Yucel M, Eroglu I (2015) Hydrogen production by hup mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors. Bioprocess Biosyst Eng 38(10):1935–1942

    Article  CAS  Google Scholar 

  • Varanasi JL, Sinha P, Das D (2017) Maximizing power generation from dark fermentation effluents in microbial fuel cell by selective enrichment of exoelectrogens and optimization of anodic operational parameters. Biotechnol Lett 39:721–730

    Article  CAS  Google Scholar 

  • Vatsala T, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacteria co-culture. Int J Hydrog Energy 33(20):5404–5415

    Article  CAS  Google Scholar 

  • Vazquez-Larios AL, Solorza-Feria O, Vazquez-Huerta G, Esparza-Garcia F, Rinderknecht-Seijas N, Poggi-Varaldo HM (2011) Effects of architectural changes and inoculum type on internal resistance of a microbial fuel cell designed for the treatment of leachates from the dark hydrogenogenic fermentation of organic solid wastes. Int J Hydrog Energy 36(10):6199–6209

    Article  CAS  Google Scholar 

  • Venkata Mohan V, Mohanakrishna G, Goud RK, Sarma PN (2009) Acidogenic fermentation of vegetable based market to harness biohydrogen with simultaneous stabilization. Bioresour Technol 100(12):3061–3068

    Article  CAS  Google Scholar 

  • Wang X, Zhao YC (2009) A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int J Hydrog Energy 34(1):245–254

    Article  CAS  Google Scholar 

  • Wang A, Sun D, Cao G, Wang H, Ren N, Wu WM, Logan BE (2011) Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresour Technol 102(5):4137–4143

    Article  CAS  Google Scholar 

  • Wang X, Jiang D, Lang X (2017) Future extreme climate changes linked to global warming intensity. Sci Bullet 62(24):1673–1680

    Article  Google Scholar 

  • Whiteman JK, Gueguim Kana EB (2014) Comparative assessment of the artificial neural network and response surface modelling efficiencies for biohydrogen production on sugar cane molasses. Bioenergy Res 7(1):295–305

    Article  CAS  Google Scholar 

  • Wong YM, Juan JC, Gan HM et al (2014a) Draft genome sequence of Clostridium perfringens strain JJC, a highly efficient hydrogen producer isolated from landfill leachate sludge. Genome Ann 2(2):1–2

    Google Scholar 

  • Wong YM, Wu TY, Juan JC (2014b) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 34:471–482

    Article  CAS  Google Scholar 

  • Wong YM, Wu TY, Ling TC, Show PL, Lee SY, Chang JS, Ibrahim S, Juan JC (2018) Evaluating new bio-hydrogen producers: Clostridium perfringens strain JJC, Clostridium bifermentans strain WYM and Clostridium sp. strain Ade.TY. J Biosci Bioeng 125(5):590–598

    Article  CAS  Google Scholar 

  • Wu K, Chang J, Chang C (2006) Biohydrogen production using suspended and immobilized mixed microflora. J Chin Inst Chem Eng 37(6):545–550

    CAS  Google Scholar 

  • Wu X, Li Q, Dieudonne M, Cong Y, Zhou J, Long M (2010) Enhanced H2 gas production from bagasse using adhE inactivated Klebsiella oxytoca HP1 by sequential dark-photo fermentations. Bioresour Technol 10(24):9506–9511

    Google Scholar 

  • Wu S, Li X, Yu J, Wang Q (2012a) Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum. Bioresour Technol 123:184–188

    Article  CAS  Google Scholar 

  • Wu SC, Lu PF, Lin YC, Chen PC, Lee CM (2012b) Bio-hydrogen production enhancement by co-cultivating Rhodopseudomonas palustris WP3-5 and Anabaena sp. CH3. Int J Hydrog Energy 37(3):2231–2238

    Article  CAS  Google Scholar 

  • Xiao L, Wu SY, Li RY (2012) Advances in solar hydrogen production via two-step water-splitting thermochemical cycles based on metal redox reactions. Renew Energy 41:1–12

    Article  Google Scholar 

  • Xu L, Zhou M, Ju H, Zhang Z, Zhang J, Sun C (2018) Enterobacter aerogenes metabolites enhance Microcystis aeruginosa biomass recovery for sustainable bioflocculant and biohydrogen production. Sci Tot Environ 634:488–496

    Article  CAS  Google Scholar 

  • Yang H, Guo L, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and pho-fermentation. Bioresour Technol 101(6):2049–2052

    Article  CAS  Google Scholar 

  • Yang H, Shi B, Ma H, Guo L (2015) Enhanced hydrogen production from cornstalk by dark- and photo-fermentation with diluted alkalicellulase two-step hydrolysis. Int J Hydrog Energy 40(36):12193–12200

    Article  CAS  Google Scholar 

  • Yokoi H, Mori S, Hirose J, Hayashi S, Yakasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnol Lett 20(9):895–899

    Article  CAS  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91(1):58–63

    Article  CAS  Google Scholar 

  • Yoro KO, Sekoai PT (2016) The potential of CO2 capture and storage technology in South Africa’s coal-fired thermal power plants. Environments 3(3):24

    Article  Google Scholar 

  • Yun YM, Lee MK, Im SW, Marone A, Trably E, Shin SR, Kim MG, Cho SK, Kim DH (2018) Biohydrogen production from food waste: current status, limitations, and future perspectives. Bioresour Technol 248:79–87

    Article  CAS  Google Scholar 

  • Zabut B, El-Kahlout K, Yucel M, Gunduz U, Turker L, Eroglu I (2006) Hydrogen gas production by combined systems of Rhodobacter sphaeroides O.U.001 and Halobacterium salinarum in a photobioreactor. Int J Hydrog Energy 31(11):1553–1562

    Article  CAS  Google Scholar 

  • Zainal BS, Zinatizadeh AK, Chyuan OH, Mohd NS, Ibrahim S (2018) Effects of process, operational and environmental variables on biohydrogen production using palm oil mill effluent (POME). Int J Hydrog Energy 43:10637–10644

    Article  CAS  Google Scholar 

  • Zhang X, Ye X, Guo B, Finneran KT, Zille JL, Morgenroth E (2013) Lignocellulosic hydrolysate and extracellular electron shuttles for H2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireduecns. Bioresour Technol 147:89–95

    Article  CAS  Google Scholar 

  • Zhang S, Qu C, Huang X, Suo Y, Liao Z, Wang J (2016) Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. J Ind Microbiol Biotechnol 43(7):915–925

    Article  CAS  Google Scholar 

  • Zhu H, Wakayama T, Asada Y, Miyake J (2006) Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+. Int J Hydrog Energy 26:1149–1154

    Article  Google Scholar 

  • Zong W, Yu R, Zhang P, Fan M, Zhou Z (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463

    Article  CAS  Google Scholar 

  • Zhou C, Zhao Q, Zang G, Xiong B (2016) Energy revolution: from a fossil energy era to a new energy era. Nat Gas Ind B 3:1–11

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Daramola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekoai, P.T., Yoro, K.O., Bodunrin, M.O. et al. Integrated system approach to dark fermentative biohydrogen production for enhanced yield, energy efficiency and substrate recovery. Rev Environ Sci Biotechnol 17, 501–529 (2018). https://doi.org/10.1007/s11157-018-9474-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-018-9474-1

Keywords

Navigation