Skip to main content
Log in

Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Hyperuricemia is a metabolic disease caused by purine nucleotide metabolism disorder. The prevalence of hyperuricemia is increasing worldwide, with a growing trend in the younger populations. Although numerous studies have indicated that hyperuricemia may be an independent risk factor for insulin resistance, the causal relationship between the two is controversial. There are few reviews, however, focusing on the relationship between uric acid (UA) and insulin resistance from experimental studies. In this review, we summarized the experimental models related to soluble UA-induced insulin resistance in pancreas and peripheral tissues, including skeletal muscles, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells and macrophages. In addition, we summarized the research advances about the key mechanism of UA-induced insulin resistance. Moreover, we attempt to identify novel targets for the treatment of hyperuricemia-related insulin resistance. Lastly, we hope that the present review will encourage further researches to solve the chicken-and-egg dilemma between UA and insulin resistance, and provide strategies for the pathogenesis and treatment of hyperuricemia related metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

AMPK:

Adenosine monophosphate-activated protein kinase

BMDMs:

Bone marrow-derived macrophages

CVDs:

Cardiovascular diseases

eNOS:

Endothelial nitric oxide synthase

ENPP1:

Ectonucleotide pyrophosphatase/phosphodiesterase 1

ERK:

Extracellular signal-regulated kinase

FFA:

Free fatty acids

GLUT4:

Glucose transporter 4

HF:

Heart failure

HFD:

High-fat diet

HMGB1:

High mobility group box 1

HO-1:

Heme oxygenase 1

HUA:

High level of uric acid

HUVECs:

Human umbilical vein endothelial cells

IR:

Insulin receptor

IRS:

Insulin receptor substrates

MCP-1:

Monocyte chemotactic protein-1

mTOR:

Mammalian target of rapamycin

NAFLD:

Non-alcoholic fatty liver disease

NLRP3:

NOD-like receptor family pyrin domain containing 3

NO:

Nitric oxide

Nrf2:

Nuclear factor erythroid 2-related factor 2

PI3K:

Phosphatidylinositol-3-kinase

PMs:

Peritoneal macrophages

RAGE:

Receptor for advanced glycation end products

RBP4:

Retinol binding protein 4

ROS:

Reactive oxygen species

SGLT-2:

Sodium-glucose co-transporter 2

sUA:

Serum uric acid

T2DM:

Type 2 diabetes mellitus

TXNIP:

Thioredoxin-interacting protein

UA:

Uric acid

ULT:

Urate-lowering therapy

URAT-1:

Urate transporter-1

Uox-KO:

Uricase gene knockout

References

  1. Chen Y, Luo L, Hu S et al. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr. 2022:1–26.

  2. Liu L, Lou S, Xu K, et al. Relationship between lifestyle choices and hyperuricemia in chinese men and women. Clin Rheumatol. 2013;32:233–9.

    Article  PubMed  Google Scholar 

  3. Koo BS, Jeong HJ, Son CN, et al. Distribution of serum uric acid levels and prevalence of hyper- and hypouricemia in a korean general population of 172,970. Korean J Intern Med. 2021;36:S264–72.

    Article  Google Scholar 

  4. Huang J, Ma ZF, Zhang Y, et al. Geographical distribution of hyperuricemia in mainland China: a comprehensive systematic review and meta-analysis. Glob Health Res Policy. 2020;5:52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen-Xu M, Yokose C, Rai SK, et al. Contemporary prevalence of gout and hyperuricemia in the United States and Decadal Trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019;71:991–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sofue T, Nakagawa N, Kanda E, et al. Prevalences of hyperuricemia and electrolyte abnormalities in patients with chronic kidney disease in Japan: a nationwide, cross-sectional cohort study using data from the Japan chronic kidney Disease Database (J-CKD-DB). PLoS ONE. 2020;15:e0240402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lohsoonthorn V, Dhanamun B, Williams MA. Prevalence of hyperuricemia and its relationship with metabolic syndrome in thai adults receiving annual health exams. Arch Med Res. 2006;37:883–9.

    Article  CAS  PubMed  Google Scholar 

  8. Dalbeth N, Gosling AL, Gaffo A, Abhishek A. Gout Lancet. 2021;397:1843–55.

    Article  CAS  PubMed  Google Scholar 

  9. Yu W, Cheng JD. Uric acid and cardiovascular disease: An update from molecular mechanism to clinical perspective. Front Pharmacol. 2020;11:582680.

  10. Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71:851–65.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ponticelli C, Podestà MA, Moroni G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020;98:1149–59.

    Article  CAS  PubMed  Google Scholar 

  12. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16:380–90.

    Article  PubMed  Google Scholar 

  13. Nielsen SM, Bartels EM, Henriksen M, et al. Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis. 2017;76:1870–82.

    Article  PubMed  Google Scholar 

  14. Kim K, Kang K, Sheol H et al. The association between serum uric acid levels and 10-year cardiovascular disease risk in non-alcoholic fatty liver disease patients. Int J Environ Res Public Health. 2022;19:1042.

  15. Xie D, Zhao H, Lu J, et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling. Am J Physiol Endocrinol Metab. 2021;320:E1032–43.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Q, Ma X, Xing J, et al. Serum uric acid is a mediator of the association between obesity and incident nonalcoholic fatty liver disease: a prospective cohort study. Front Endocrinol (Lausanne). 2021;12:657856.

    Article  PubMed  Google Scholar 

  17. Euser SM, Hofman A, Westendorp RG, Breteler MM. Serum uric acid and cognitive function and dementia. Brain. 2009;132:377–82.

    Article  CAS  PubMed  Google Scholar 

  18. Pellecchia MT, Savastano R, Moccia M, et al. Lower serum uric acid is associated with mild cognitive impairment in early Parkinson’s disease: a 4-year follow-up study. J Neural Transm (Vienna). 2016;123:1399–402.

    Article  CAS  PubMed  Google Scholar 

  19. Chen C, Li X, Lv Y, et al. High blood uric acid is associated with reduced risks of mild cognitive impairment among older adults in China: a 9-Year prospective cohort study. Front Aging Neurosci. 2021;13:747686.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang Q, Zhao H, Gao Y, et al. Uric acid inhibits HMGB1-TLR4-NF-kappaB signaling to alleviate oxygen-glucose deprivation/reoxygenation injury of microglia. Biochem Biophys Res Commun. 2021;540:22–8.

    Article  CAS  PubMed  Google Scholar 

  21. Alam AB, Wu A, Power MC, et al. Associations of serum uric acid with incident dementia and cognitive decline in the ARIC-NCS cohort. J Neurol Sci. 2020;414:116866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Latourte A, Soumaré A, Bardin T, et al. Uric acid and incident dementia over 12 years of follow-up: a population-based cohort study. Ann Rheum Dis. 2018;77:328–35.

    Article  CAS  PubMed  Google Scholar 

  23. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  24. Lann D, LeRoith D. Insulin resistance as the underlying cause for the metabolic syndrome. Med Clin North Am. 2007;91:1063–77.

  25. Krishnan E, Pandya BJ, Chung L, et al. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108–16.

    Article  PubMed  Google Scholar 

  26. Han T, Lan L, Qu R, et al. Temporal relationship between hyperuricemia and insulin resistance and its impact on future risk of hypertension. Hypertension. 2017;70:703–11.

    Article  CAS  PubMed  Google Scholar 

  27. Vuorinen-Markkola H, Yki-Järvinen H. Hyperuricemia and insulin resistance. J Clin Endocrinol Metab. 1994;78:25–9.

    CAS  PubMed  Google Scholar 

  28. Takir M, Kostek O, Ozkok A, et al. Lowering uric acid with allopurinol improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia. J Investig Med. 2015;63:924–9.

    Article  CAS  PubMed  Google Scholar 

  29. McCormick N, O’Connor MJ, Yokose C, et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis Rheumatol. 2021;73:2096–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu J, Dalbeth N, Yin H, et al. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol. 2019;15:413–26.

    Article  PubMed  Google Scholar 

  31. Lu J, Hou X, Yuan X, et al. Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int. 2018;93:69–80.

    Article  CAS  PubMed  Google Scholar 

  32. Chinese Society of Endocrinology, Chinese Medical Association. Guideline for the diagnosis and management of hyperuricemia and gout in China (2019). Chin J Endocrinol Metab. 2020;36:1–13.

    Google Scholar 

  33. Hao Y, Li H, Cao Y, et al. Uricase and horseradish peroxidase hybrid CaHPO(4) nanoflower integrated with transcutaneous patches for treatment of hyperuricemia. J Biomed Nanotechnol. 2019;15:951–65.

    Article  CAS  PubMed  Google Scholar 

  34. Kuwabara M, Niwa K, Hisatome I, et al. Asymptomatic hyperuricemia without comorbidities predicts cardiometabolic diseases: five-year Japanese cohort study. Hypertension. 2017;69:1036–44.

    Article  CAS  PubMed  Google Scholar 

  35. Kuwabara M, Borghi C, Cicero AFG, et al. Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: a five-year cohort study in Japan. Int J Cardiol. 2018;261:183–8.

    Article  PubMed  Google Scholar 

  36. Kuwabara M, Hisatome I, Niwa K, et al. Uric acid is a strong risk marker for developing hypertension from prehypertension: a 5-year Japanese cohort study. Hypertension. 2018;71:78–86.

    Article  CAS  PubMed  Google Scholar 

  37. Maruhashi T, Hisatome I, Kihara Y, Higashi Y. Hyperuricemia and endothelial function: from molecular background to clinical perspectives. Atherosclerosis. 2018;278:226–31.

    Article  CAS  PubMed  Google Scholar 

  38. Ma J, Sheng Y, Lao Z, et al. Hyperuricemia is associated with androgenetic alopecia in men: a cross-sectional case-control study. J Cosmet Dermatol. 2020;19:3122–6.

    Article  PubMed  Google Scholar 

  39. Salem S, Mehrsai A, Heydari R, Pourmand G. Serum uric acid as a risk predictor for erectile dysfunction. J Sex Med. 2014;11:1118–24.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YF, Lin HH, Lu CC, et al. Gout and a subsequent increased risk of erectile dysfunction in men aged 64 and under: a nationwide cohort study in Taiwan. J Rheumatol. 2015;42:1898–905.

    Article  CAS  PubMed  Google Scholar 

  41. Long H, Jiang J, Xia J, et al. Hyperuricemia is an independent risk factor for erectile dysfunction. J Sex Med. 2016;13:1056–62.

    Article  PubMed  Google Scholar 

  42. Abdul Sultan A, Mallen C, Hayward R, et al. Gout and subsequent erectile dysfunction: a population-based cohort study from England. Arthritis Res Ther. 2017;19:123.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wang W, Jing Z, Liu W et al. Hyperuricaemia is an important risk factor of the erectile dysfunction: A systematic review and meta-analysis. Andrologia. 2022:e14384.

  44. Totaro M, Dimarakis S, Castellini C, et al. Erectile dysfunction in hyperuricemia: a prevalence meta-analysis and meta-regression study. Andrology. 2022;10:72–81.

    Article  PubMed  Google Scholar 

  45. Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766.

    Article  CAS  PubMed  Google Scholar 

  46. Lipina C, Hundal HS. Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia. 2011;54:1596–607.

    Article  CAS  PubMed  Google Scholar 

  47. Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–61.

    Article  CAS  PubMed  Google Scholar 

  48. Saltiel AR. Insulin signaling in health and disease. J Clin Invest. 2021;131:e142241.

  49. Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19:654–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148:852–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu J, Sun L, Yang J, et al. Genetic predisposition to type 2 diabetes and insulin levels is positively associated with serum urate levels. J Clin Endocrinol Metab. 2021;106:e2547-56.

    Article  PubMed  Google Scholar 

  52. Hu X, Rong S, Wang Q, et al. Association between plasma uric acid and insulin resistance in type 2 diabetes: a mendelian randomization analysis. Diabetes Res Clin Pract. 2021;171:108542.

    Article  CAS  PubMed  Google Scholar 

  53. Mandal AK, Leask MP, Estiverne C, et al. Genetic and physiological effects of insulin on human urate homeostasis. Front Physiol. 2021;12:713710.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nishikawa T, Nagata N, Shimakami T, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Sci Rep. 2020;10:815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ng HY, Leung FF, Kuo WH, et al. Dapagliflozin and xanthine oxidase inhibitors improve insulin resistance and modulate renal glucose and urate transport in metabolic syndrome. Clin Exp Pharmacol Physiol. 2021;48:1603–12.

    Article  CAS  PubMed  Google Scholar 

  56. Rocic B, Vucic-Lovrencic M, Poje N, et al. Uric acid may inhibit glucose-induced insulin secretion via binding to an essential arginine residue in rat pancreatic beta-cells. Bioorg Med Chem Lett. 2005;15:1181–4.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Yamamoto T, Hisatome I, et al. Uric acid induces oxidative stress and growth inhibition by activating adenosine monophosphate-activated protein kinase and extracellular signal-regulated kinase signal pathways in pancreatic beta cells. Mol Cell Endocrinol. 2013;375:89–96.

    Article  CAS  PubMed  Google Scholar 

  58. Lu J, He Y, Cui L, et al. Hyperuricemia predisposes to the onset of diabetes via promoting pancreatic beta-cell death in uricase-deficient male mice. Diabetes. 2020;69:1149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu Y, Zhao H, Lu J, et al. High uric acid promotes dysfunction in pancreatic beta cells by blocking IRS2/AKT signalling. Mol Cell Endocrinol. 2021;520:111070.

    Article  CAS  PubMed  Google Scholar 

  60. Zhu Y, Hu Y, Huang T, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707–14.

    Article  CAS  PubMed  Google Scholar 

  61. Yuan H, Hu Y, Zhu Y, et al. Metformin ameliorates high uric acid-induced insulin resistance in skeletal muscle cells. Mol Cell Endocrinol. 2017;443:138–45.

    Article  CAS  PubMed  Google Scholar 

  62. Baldwin W, McRae S, Marek G, et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes. 2011;60:1258–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu C, Zhou XR, Ye MY, et al. RBP4 is associated with insulin resistance in hyperuricemia-induced rats and patients with hyperuricemia. Front Endocrinol (Lausanne). 2021;12:653819.

    Article  PubMed  Google Scholar 

  64. Wan X, Xu C, Lin Y, et al. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. J Hepatol. 2016;64:925–32.

    Article  CAS  PubMed  Google Scholar 

  65. He F, Wang M, Zhao H, et al. Autophagy protects against high uric acid-induced hepatic insulin resistance. Mol Cell Endocrinol. 2022;547:111599.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka Y, Nagoshi T, Takahashi H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metab. 2022;55:101411.

    Article  CAS  PubMed  Google Scholar 

  67. Zhi L, Yuzhang Z, Tianliang H, et al. High uric acid induces insulin resistance in cardiomyocytes in vitro and in vivo. PLoS ONE. 2016;11:e0147737.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jiao Z, Chen Y, Xie Y, et al. Metformin protects against insulin resistance induced by high uric acid in cardiomyocytes via AMPK signalling pathways in vitro and in vivo. J Cell Mol Med. 2021;25:6733–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi YJ, Yoon Y, Lee KY, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28:3197–204.

    Article  CAS  PubMed  Google Scholar 

  70. Tassone EJ, Cimellaro A, Perticone M, et al. Uric acid impairs insulin signaling by promoting Enpp1 binding to insulin receptor in human umbilical vein endothelial cells. Front Endocrinol (Lausanne). 2018;9:98.

    Article  PubMed  Google Scholar 

  71. Yu W, Chen C, Zhuang W, et al. Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/HO-1 pathways in macrophages. Free Radic Biol Med. 2022;178:42–53.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao H, He F, Lu J, et al. Hyperuricemia contributes to glucose intolerance of hepatic inflammatory macrophages and impairs the insulin signaling pathway via IRS2-proteasome degradation. Front Immunol. 2022;13:931087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li M, Gu L, Yang J, Lou Q. Serum uric acid to creatinine ratio correlates with β-cell function in type 2 diabetes. Diabetes Metab Res Rev. 2018;34:e3001.

    Article  PubMed  Google Scholar 

  74. Tang W, Fu Q, Zhang Q et al. The association between serum uric acid and residual β -cell function in type 2 diabetes. J Diabetes Res 2014;2014:709691.

  75. Zhong X, Zhang D, Yang L, et al. The relationship between serum uric acid within the normal range and β-cell function in chinese patients with type 2 diabetes: differences by body mass index and gender. PeerJ. 2019;7:e6666.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kutoh E, Wada A, Kuto AN, Hayashi J. Regulation of serum uric acid with canagliflozin monotherapy in type 2 diabetes: a potential link between uric acid and pancreatic β-cell function. Int J Clin Pharmacol Ther. 2019;57:590–5.

    Article  CAS  PubMed  Google Scholar 

  77. Yu P, Huang L, Wang Z, et al. The Association of serum uric acid with Beta-cell function and insulin resistance in nondiabetic individuals: a cross-sectional study. Diabetes Metab Syndr Obes. 2021;14:2673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Martinez-Sanchez FD, Vargas-Abonce VP, Guerrero-Castillo AP, et al. Serum uric acid concentration is associated with insulin resistance and impaired insulin secretion in adults at risk for type 2 diabetes. Prim Care Diabetes. 2021;15:293–9.

    Article  CAS  PubMed  Google Scholar 

  79. Fernandez-Chirino L, Antonio-Villa NE, Fermin-Martinez CA et al. Elevated serum uric acid is a facilitating mechanism for insulin resistance mediated accumulation of visceral adipose tissue. Clin Endocrinol (Oxf). 2022;96:707–18.

  80. Watt MJ, Miotto PM, De Nardo W, Montgomery MK. The liver as an endocrine organ-linking NAFLD and insulin resistance. Endocr Rev. 2019;40:1367–93.

    Article  PubMed  Google Scholar 

  81. Feuvray D, Darmellah A. Diabetes-related metabolic perturbations in cardiac myocyte. Diabetes Metab. 2008;34(Suppl 1):3–9.

    Article  Google Scholar 

  82. Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care. 2007;10:142–8.

    Article  CAS  PubMed  Google Scholar 

  83. Vaduganathan M, Greene SJ, Ambrosy AP, et al. Relation of serum uric acid levels and outcomes among patients hospitalized for worsening heart failure with reduced ejection fraction (from the efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan trial). Am J Cardiol. 2014;114:1713–21.

    Article  CAS  PubMed  Google Scholar 

  84. Huang H, Huang B, Li Y, et al. Uric acid and risk of heart failure: a systematic review and meta-analysis. Eur J Heart Fail. 2014;16:15–24.

    Article  CAS  PubMed  Google Scholar 

  85. Palazzuoli A, Ruocco G, De Vivo O, et al. Prevalence of hyperuricemia in patients with acute heart failure with either reduced or preserved ejection fraction. Am J Cardiol. 2017;120:1146–50.

    Article  CAS  PubMed  Google Scholar 

  86. Pavlusova M, Jarkovsky J, Benesova K, et al. Hyperuricemia treatment in acute heart failure patients does not improve their long-term prognosis: a propensity score matched analysis from the AHEAD registry. Clin Cardiol. 2019;42:720–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008.

    Article  CAS  PubMed  Google Scholar 

  88. Packer M, Anker SD, Butler J, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.

    Article  CAS  PubMed  Google Scholar 

  89. Zannad F, Ferreira JP, Pocock SJ, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–29.

    Article  PubMed  Google Scholar 

  90. Wilcox CS, Shen W, Boulton DW et al. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. 2018;7:e007046.

  91. Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20:458–62.

    Article  CAS  PubMed  Google Scholar 

  92. Xin Y, Guo Y, Li Y, et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis. Saudi J Biol Sci. 2019;26:421–6.

    Article  CAS  PubMed  Google Scholar 

  93. Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:2223–33.

    Article  CAS  PubMed  Google Scholar 

  94. Honka H, Solis-Herrera C, Triplitt C, et al. Therapeutic manipulation of myocardial metabolism: JACC state-of-the-art review. J Am Coll Cardiol. 2021;77:2022–39.

    Article  CAS  PubMed  Google Scholar 

  95. Dyck JRB, Sossalla S, Hamdani N, et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17–31.

    Article  CAS  PubMed  Google Scholar 

  96. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107:1032–8.

  97. Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a “Thrifty Substrate” hypothesis. Diabetes Care. 2016;39:1108–14.

    Article  PubMed  Google Scholar 

  98. Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care. 2016;39:1115–22.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou H, Wang S, Zhu P, et al. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission. Redox Biol. 2018;15:335–46.

    Article  CAS  PubMed  Google Scholar 

  100. Hawley SA, Ford RJ, Smith BK, et al. The Na+/Glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes. 2016;65:2784–94.

    Article  CAS  PubMed  Google Scholar 

  101. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Hyperuricemia-induced endothelial insulin resistance: the nitric oxide connection. Pflugers Arch. 2022;474:83–98.

    Article  CAS  PubMed  Google Scholar 

  102. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu S, Ilyas I, Little PJ, et al. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacol Rev. 2021;73:924–67.

    Article  CAS  PubMed  Google Scholar 

  104. Cassano V, Crescibene D, Hribal ML et al. Uric acid and vascular damage in essential hypertension: role of insulin resistance. Nutrients. 2020;12:2509.

  105. Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14:575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009. Diabetologia. 2010;53:1270–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mukhuty A, Fouzder C, Kundu R. Fetuin-A secretion from beta-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. J Cell Sci. 2021;134:jcs258507.

  109. Rehman K, Akash MS. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci. 2016;23:87.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Imai Y, Dobrian AD, Weaver JR, et al. Interaction between cytokines and inflammatory cells in islet dysfunction, insulin resistance and vascular disease. Diabetes Obes Metab. 2013;15(Suppl 3):117–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab. 2013;24:351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen M, Ye C, Zhu J, et al. Bergenin as a novel urate-lowering therapeutic strategy for hyperuricemia. Front Cell Dev Biol. 2020;8:703.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cell Mol Life Sci. 2015;72:4111–26.

    Article  CAS  PubMed  Google Scholar 

  115. Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol. 2011;11:788–98.

    Article  CAS  PubMed  Google Scholar 

  116. Rehman A, Pacher P, Haskó G. Role of macrophages in the endocrine system. Trends Endocrinol Metab. 2021;32:238–56.

    Article  CAS  PubMed  Google Scholar 

  117. Tateya S, Kim F, Tamori Y. Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;4:93.

    Article  PubMed  Google Scholar 

  118. Yu W, Liu W, Xie et al. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid Med Cell Longev. 2022;2022:9304383.

  119. Kimura Y, Yanagida T, Onda A, et al. Soluble uric acid promotes atherosclerosis via AMPK (AMP-Activated protein Kinase)-Mediated inflammation. Arterioscler Thromb Vasc Biol. 2020;40:570–82.

    Article  CAS  PubMed  Google Scholar 

  120. Qayyum N, Haseeb M, Kim MS, Choi S. Role of thioredoxin-interacting protein in diseases and its therapeutic outlook. Int J Mol Sci. 2021;22:275422.

  121. Thielen LA, Chen J, Jing G, et al. Identification of an anti-diabetic, orally available small molecule that regulates TXNIP expression and glucagon action. Cell Metab. 2020;32:353–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang W, Xu P, Li JY. The crucial role of thioredoxin interacting protein in the liver insulin resistance induced by di (2-ethylhexyl) phthalates. Food Chem Toxicol. 2022;164:113045.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang QY, Pan Y, Wang R, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420–8.

    Article  CAS  PubMed  Google Scholar 

  124. Li S, Eguchi N, Lau H, Ichii H. The role of the Nrf2 signaling in obesity and insulin resistance. Int J Mol Sci. 2020;21:6973.

  125. Yagishita Y, Uruno A, Fukutomi T, et al. Nrf2 improves leptin and insulin resistance provoked by hypothalamic oxidative stress. Cell Rep. 2017;18:2030–44.

    Article  CAS  PubMed  Google Scholar 

  126. Chartoumpekis DV, Ziros PG, Psyrogiannis AI, et al. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice. Diabetes. 2011;60:2465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Meakin PJ, Chowdhry S, Sharma RS, et al. Susceptibility of Nrf2-null mice to steatohepatitis and cirrhosis upon consumption of a high-fat diet is associated with oxidative stress, perturbation of the unfolded protein response, and disturbance in the expression of metabolic enzymes but not with insulin resistance. Mol Cell Biol. 2014;34:3305–20.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Liu Z, Dou W, Ni Z, et al. Deletion of Nrf2 leads to hepatic insulin resistance via the activation of NF-κB in mice fed a high-fat diet. Mol Med Rep. 2016;14:1323–31.

    Article  CAS  PubMed  Google Scholar 

  129. Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123:2764–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Buhl ES, Jessen N, Pold R, et al. Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes. 2002;51:2199–206.

    Article  CAS  PubMed  Google Scholar 

  131. Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.

    Article  CAS  PubMed  Google Scholar 

  132. Lan P, Romero FA, Wodka D, et al. Hit-to-lead optimization and discovery of 5-((5-([1,1’-Biphenyl]-4-yl)-6-chloro-1H-benzo[d]imidazol-2-yl)oxy)-2-methylbenzoic acid (MK-3903): a novel class of benzimidazole-based activators of AMP-activated protein kinase. J Med Chem. 2017;60:9040–52.

    Article  CAS  PubMed  Google Scholar 

  133. Liu Y, Jurczak MJ, Lear TB, et al. A Fbxo48 inhibitor prevents pAMPKalpha degradation and ameliorates insulin resistance. Nat Chem Biol. 2021;17:298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rheinheimer J, de Souza BM, Cardoso NS, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review. Metabolism. 2017;74:1–9.

    Article  CAS  PubMed  Google Scholar 

  135. Hull C, Dekeryte R, Buchanan H, et al. NLRP3 inflammasome inhibition with MCC950 improves insulin sensitivity and inflammation in a mouse model of frontotemporal dementia. Neuropharmacology. 2020;180:108305.

    Article  CAS  PubMed  Google Scholar 

  136. Chen X, Zhang D, Li Y, et al. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: friend or foe? Pharmacol Res. 2021;173:105885.

    Article  CAS  PubMed  Google Scholar 

  137. Sun K, Wang J, Lan Z, et al. Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes Surg. 2020;30:3435–43.

    Article  PubMed  Google Scholar 

  138. Chinta PK, Tambe S, Umrani D, et al. Effect of parthenolide, an NLRP3 inflammasome inhibitor, on insulin resistance in high-fat diet-obese mice. Can J Physiol Pharmacol. 2022;100:272–81.

    Article  CAS  PubMed  Google Scholar 

  139. Kitada M, Koya D. Autophagy in metabolic disease and ageing. Nat Rev Endocrinol. 2021;17:647–61.

    Article  PubMed  Google Scholar 

  140. Zhou W, Ye S. Rapamycin improves insulin resistance and hepatic steatosis in type 2 diabetes rats through activation of autophagy. Cell Biol Int. 2018;42:1282–91.

    Article  CAS  PubMed  Google Scholar 

  141. Zhang D, Ma Y, Liu J, et al. Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-dependent autophagy. Front Pharmacol. 2021;12:689111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436:356–62.

    Article  CAS  PubMed  Google Scholar 

  143. Nono Nankam PA, Bluher M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol Cell Endocrinol. 2021;531:111312.

    Article  CAS  PubMed  Google Scholar 

  144. Prudente S, Morini E, Trischitta V. Insulin signaling regulating genes: effect on T2DM and cardiovascular risk. Nat Rev Endocrinol. 2009;5:682–93.

    Article  CAS  PubMed  Google Scholar 

  145. Di Paola R, Caporarello N, Marucci A, et al. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS ONE. 2011;6:e19462.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Yang B, Xin M, Liang S, et al. New insight into the management of renal excretion and hyperuricemia: potential therapeutic strategies with natural bioactive compounds. Front Pharmacol. 2022;13:1026246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang X, Nie Q, Zhang Z et al. Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol Med Rep. 2021;24:564.

  148. Sang M, Du G, Hao J, et al. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. J Pharm Biomed Anal. 2017;139:37–43.

    Article  CAS  PubMed  Google Scholar 

  149. Xu K, Liu S, Zhao X, et al. Treating hyperuricemia related non-alcoholic fatty liver disease in rats with resveratrol. Biomed Pharmacother. 2019;110:844–9.

    Article  CAS  PubMed  Google Scholar 

  150. Yang S, Cao S, Li C, et al. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota. Front Pharmacol. 2022;13:913378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou YJ, Xu N, Zhang XC, et al. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69:5618–27.

    Article  CAS  PubMed  Google Scholar 

  152. Kim SM, Imm JY. The effect of chrysin-loaded phytosomes on insulin resistance and blood sugar control in type 2 diabetic db/db mice. Molecules. 2020;25:550325.

  153. Chang YH, Chiang YF, Chen HY et al. Anti-inflammatory and anti-hyperuricemic effects of chrysin on a high fructose corn syrup-induced hyperuricemia rat model via the amelioration of urate transporters and inhibition of NLRP3 inflammasome signaling pathway. Antioxidants (Basel). 2021;10:564.

  154. Liu W, Chen X, Ge Y, et al. Network pharmacology strategy for revealing the pharmacological mechanism of pharmacokinetic target components of San-Ye-Tang-Zhi-Qing formula for the treatment of type 2 diabetes mellitus. J Ethnopharmacol. 2020;260:113044.

    Article  CAS  PubMed  Google Scholar 

  155. Guo Y, Yu Y, Li H, et al. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur J Nutr. 2021;60:2217–30.

    Article  CAS  PubMed  Google Scholar 

  156. Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med. 2013;34:39–58.

    Article  CAS  PubMed  Google Scholar 

  157. Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23:716–24.

    Article  CAS  PubMed  Google Scholar 

  158. Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiol (Bethesda). 2016;31:283–93.

    CAS  Google Scholar 

  159. Zhang W, Wang T, Guo R, et al. Variation of serum uric acid is associated with gut microbiota in patients with Diabetes Mellitus. Front Cell Infect Microbiol. 2021;11:761757.

    Article  CAS  PubMed  Google Scholar 

  160. Su Z, Nie Y, Huang X, et al. Mitophagy in hepatic insulin resistance: therapeutic potential and concerns. Front Pharmacol. 2019;10:1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Quirós PM, Langer T, López-Otín C. New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol. 2015;16:345–59.

    Article  PubMed  Google Scholar 

  162. Villalobos-Labra R, Subiabre M, Toledo F, et al. Endoplasmic reticulum stress and development of insulin resistance in adipose, skeletal, liver, and foetoplacental tissue in diabesity. Mol Aspects Med. 2019;66:49–61.

    Article  CAS  PubMed  Google Scholar 

  163. Ouyang R, Zhao X, Zhang R et al. FGF21 attenuates high uric acid–induced endoplasmic reticulum stress, inflammation and vascular endothelial cell dysfunction by activating Sirt1. Mol Med Rep. 2022;25:35.

  164. Yan M, Chen K, He L, et al. Uric acid induces cardiomyocyte apoptosis via activation of calpain-1 and endoplasmic reticulum stress. Cell Physiol Biochem. 2018;45:2122–35.

    Article  CAS  PubMed  Google Scholar 

  165. Choi YJ, Shin HS, Choi HS, et al. Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest. 2014;94:1114–25.

    Article  CAS  PubMed  Google Scholar 

  166. Li S, Zhao F, Cheng S, et al. Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells. Nephrol (Carlton). 2013;18:682–9.

    CAS  Google Scholar 

  167. Ebrahimi R, Pasalar P, Shokri H et al. Evidence for the effect of soluble uric acid in augmenting endoplasmic reticulum stress markers in human peripheral blood mononuclear cells. J Physiol Biochem. 2022;78:343–53.

  168. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci. 2014;10:520–9.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This work was supported by grants from the Natural Science Foundation of China (82260163), the Natural Science Foundation of Fujian Province (2020J01018) and the Gout Research Foundation (Japan, 2022).

Author information

Authors and Affiliations

Authors

Contributions

Wei Yu and Jidong Cheng identified and interpreted the literature sources and drafted the manuscript. Wei Yu, De Xie, Tetsuya Yamamoto, and Hidenori Koyama collected relevant research and review papers, designed the figures, and prepared the content of the tables. Wei Yu and Jidong Cheng completed the proofreading and final editing of the manuscript.

Corresponding author

Correspondence to Jidong Cheng.

Ethics declarations

Consent for publication

All authors read and approve the publication.

Competing interest

None.

Conflict of interests

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Hyperuricemia is closely associated with insulin resistance, however, their true interaction has long been debated and remains unclear.

• An increasing number of experimental studies have demonstrated soluble UA-induced insulin resistance in the pancreas and peripheral tissues, including skeletal muscle, adipose tissue, liver, heart/cardiomyocytes, vascular endothelial cells, and macrophages.

• The molecular mechanism of UA-induced insulin resistance is mainly via impaired insulin signaling, including IR, IRS, PI3K/Akt, and GLUT4.

• The activation of TXNIP, RBP4, AMPK, ENPP1, and NLRP3 inflammasome, M1 macrophage polarization, and autophagy defects may be potential novel mechanisms and intervention targets for UA-induced insulin resistance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Xie, D., Yamamoto, T. et al. Mechanistic insights of soluble uric acid-induced insulin resistance: Insulin signaling and beyond. Rev Endocr Metab Disord 24, 327–343 (2023). https://doi.org/10.1007/s11154-023-09787-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09787-4

Keywords

Navigation