Skip to main content

Advertisement

Log in

Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity and diabetes are important metabolic diseases and a major public health problem among the world, they have serious health and economic complications. Overweight and obesity are increased risk for deficiency of vitamin particularly shortage of fat soluble-vitamins. Studies reported that vitamin K supplementation reduces oxidative stress and metabolic risk biomarkers for diabetes, as well as reduces progression of insulin resistance. Vitamin K-dependent-protein osteocalcin (bone derived hormone) plays crucial roles in energy metabolism. There is a clear association between circulating vitamin k and dependent-osteocalcin concentrations with obesity and risk of Type 2 diabetes. Osteocalcin through molecular mechanisms improves insulin resistance, lipid and glucose profile, and mediate vitamin K positive effects. Insulin also signals osteocalcin to regulate bone mineralization. Normal carboxylation of vitamin K-dependent proteins/ hormones is a key step in preventing apoptosis and calcification of vascular endothelial cells. A missing relationship between bone, glucose and fat metabolism could clarify and manage many metabolic mechanisms. This review focuses on the physiological relationship between vitamin K-dependent-osteocalcin, metabolic and cardiovascular diseases through some molecular proteins and hormones including adipokines. A better understanding of the mechanism of action of osteocalcin modulated by vitamin K could help in implementing therapeutic drugs to cure metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr. 1998;5:785–8.

    Article  Google Scholar 

  2. Price PA, Rice JS, Williamson MK. Conserved phosphorylation of serines in the Ser-X-Glu/Ser(P) sequences of the vitamin K-dependent matrix Gla protein from shark, lamb, rat, cow, and human. Protein Sci. 1994;3(5):822–30.

    Article  CAS  Google Scholar 

  3. Eibhlís MO, Osteocalcin E. The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism. Journal of Nutrition & Intermediary Metabolism. 2017;7:8–13.

    Article  Google Scholar 

  4. Giovanni L, Silvia P, Livio L, Giuseppe B. A four-season molecule: osteocalcin. Updates in its physiological Roles. Endocrine. 2015;48:394–404. https://doi.org/10.1007/s12020-014-0401-0.

    Article  CAS  Google Scholar 

  5. Alexandre C, Christiane S, Franck O. Bone, brain & beyond. Rev Endocr Metab Disord. 2015;16:99–113. https://doi.org/10.1007/s11154-015-9312-5.

    Article  CAS  Google Scholar 

  6. Al-Suhaimi E. Molecular mechanisms of leptin and pro-apoptotic signals induced by menadione in HepG2 cells. Saudi Journal of Biological Sciences. 2014;21:582–8. https://doi.org/10.1016/j.sjbs.2014.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf G. Function of the bone protein osteocalcin: definitive evidence. Nutr Rev. 1996;54:332–3.

    Article  CAS  Google Scholar 

  8. Kruger MC, Booth CL, Coad J, Schollum LM, Kuhn-Sherlock B, Shearer MJ. Effect of calcium fortified milk supplementation with or without vitamin K on biochemical markers of bone turnover in premenopausal women. Nutrition. 2006;22(11–12):1120–8.

    Article  CAS  Google Scholar 

  9. Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. JCell Physiol. 2013;228:1149–53.

    Article  CAS  Google Scholar 

  10. Harada SI, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003;423:349–55.

    Article  CAS  Google Scholar 

  11. Hauschka, P.V.; Lian, J. B.; Cole, D.; Gundberg, C. M. Osteocalcin and matrix Glaprotein: VitaminK-dependent proteins in bone. Physiol. Rev.1989,69, 990–1047. Cited after (Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: Osteocalcin and beyond. Archives of Biochemistry and Biophysics. 2014, 561, 137–146. https://doi.org/10.1016/j.abb.2014.05.022).

  12. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  CAS  Google Scholar 

  13. Lee, N.K. ; Sowa, H. ; Hinoi, E. ; Ferron, M. ; Ahn, J.D. ; Confavreux, C. ; Dacquin, R., ; Mee, P.J. ; McKee, M.D. ; Jung, D.Y. ; et al. Endocrine regulation of energy metabolism by the skeleton. Cell 2007, 30, 456–469.

    Article  Google Scholar 

  14. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809.

    Article  CAS  Google Scholar 

  15. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, et al. Serum leptin level is regulator of bone mass. Proc Natl Acad Sci U S A. 2004;101:3258–63.

    Article  CAS  Google Scholar 

  16. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008;105:5266–70.

    Article  CAS  Google Scholar 

  17. Shea MK, Booth SL, Gundberg CM, Peterson JW, Waddell C, Dawson-Hughes B, et al. Adulthood obesity is positively associated with adipose tissue concentrations of vitamin K and inversely associated with circulating indicators of vitamin KStatus in men and women. Journal of nutrition. 2010;140(5):1029–34. https://doi.org/10.3945/jn.109.118380.

    Article  CAS  PubMed  Google Scholar 

  18. Kim M, Na W, Sohn C. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice. Journal of clinical biochemistry and nutrition. 2013, 53(2):108–13. https://doi.org/10.3164/jcbn.13-25.

  19. Prasenjit M, Jatin K. Beneficial role of vitamin K supplementation on insulin sensitivity, glucose metabolism, and the reduced risk of type 2 diabetes: a review. Nutrition. 2016;32:732–9.

    Article  Google Scholar 

  20. Daisuke K, Ha WL, Kyle JR, Emilio A, Mathieu F, Bin Z, et al. Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO. Cell Metabolism. 2013;17(4):901–15. https://doi.org/10.1016/j.cmet.2013.04.009.

    Article  CAS  Google Scholar 

  21. Ding YI, Cui J, Wang Q, Shen SQ, Xu T, Tang HR, et al. The Vitamin K Epoxide Reductase Vkorc1l1 Promotes Preadipocyte Differentiation in Mice. Obesity. 2018;26(8):1303–11. https://doi.org/10.1002/oby.22206.

    Article  CAS  PubMed  Google Scholar 

  22. Razny U, Fedak D, Kiec-Wilk B, Goralska J, Gruca A, Zdzienicka A, et al. Carboxylated and undercarboxylated osteocalcin in metabolic complications of human obesity and prediabetes. Diabetes-metabolism research and reviews. 2017;33(3):e2862. https://doi.org/10.1002/dmrr.2862.

    Article  CAS  Google Scholar 

  23. Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone. Annu Rev Physiol. 2012;74:87–105.

    Article  CAS  Google Scholar 

  24. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100(2):197–207.

    Article  CAS  Google Scholar 

  25. Lin XZ, Brennan-Speranza TC, Levinger I, Yeap BB, Lin XZ, Brennan-Speranza TC, et al. Yeap, B. B. Undercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regulation of Insulin Sensitivity. Nutrients. 2018;10:7. https://doi.org/10.3390/nu10070847.

    Article  CAS  Google Scholar 

  26. Hussein, AG (Hussein, Atef; Mohamed, RH; Shalaby, SM; Abd El Motteleb, DM. Vitamin K-2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition. 2018, 47, 33–38 DOI: https://doi.org/10.1016/j.nut.2017.09.016.

  27. Suksomboon N, Poolsup N, Ko HDK. Effect of vitamin K supplementation on insulin sensitivity: a meta-analysis. Diabetes metabolic syndrome and obesity-targets and therapy. 2017;10:169–77. https://doi.org/10.2147/DMSO.S137571.

    Article  CAS  Google Scholar 

  28. Juanola-Falgarona M, Salas-Salvado J, Estruch R, Portillo MP, Casas R, Miranda J, et al. Association between dietary phylloquinone intake and peripheral metabolic risk markers related to insulin resistance and diabetes in elderly subjects at high cardiovascular risk. Cardiovascular diabetology. 2013;12:7. https://doi.org/10.1186/1475-2840-12-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bauer NB, El Khassawna T, Goldmann F, Stirn M, Ledieu D, Schlewitz G, et al. Characterization of bone turnover and energy metabolism in a rat model of primary and secondary osteoporosis. Experimental and toxicologic pathology. 2015;67(4):287–96. https://doi.org/10.1016/j.etp.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  30. Li Y, Chen JP, Duan LL, Li SZ. Effect of vitamin K2 on type 2 diabetes mellitus: a review. Diabetes Res Clin Pract. 2018;136:39–5. https://doi.org/10.1016/j.diabres.2017.11.020.

    Article  CAS  PubMed  Google Scholar 

  31. Shahdadian, F; Mohammadi, H ; Rouhani, MH. Effect of vitamin K supplementation on glycemic control: A systematic review and meta-analysis of clinical Trials Hormone and metabolic research 2018, 50, 3, 227–235. DOI: https://doi.org/10.1055/s-0044-100616 Published:MAR.

  32. Zwakenberg SR, Remmelzwaal S, Beulens JWJ, Booth SL, Burgess S, Dashti HSS, et al. Circulating Phylloquinone Concentrations and Risk of Type 2 Diabetes: A Mendelian Randomization Study. Diabetes. 2019;68(1):220–5. https://doi.org/10.2337/db18-0543.

    Article  CAS  PubMed  Google Scholar 

  33. Bo Z, Huixia L, Lin X, Weijin Z, Shufang W, Hongzhi S. Osteocalcin Reverses Endoplasmic Reticulum Stress and Improves Impaired Insulin Sensitivity Secondary to Diet-Induced Obesity Through Nuclear Factor-κB Signaling Pathway. Endocrinology. 2013;154(3):1055–68. https://doi.org/10.1210/en.2012-2144.

    Article  CAS  Google Scholar 

  34. Ippei K, Toru Y, Shozo Y, Mika Y, Masahiro Y, Toshitsugu S. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 2007;8:51. https://doi.org/10.1186/1471-2121-8-51.

    Article  CAS  Google Scholar 

  35. Heidi SB, Staale PL, Axel S, Marta M, Liv T, Christian AD, et al. Adiponectin and its receptors are expressed in bone-forming cells. Bone. 2004;35(4):842–9. https://doi.org/10.1016/j.bone.2004.06.008.

    Article  CAS  Google Scholar 

  36. M Kyla Shea; Caren M G; James B M; Gerard E D; Edward S; Makiko Y; Paul F J, Sarah L B. Carboxylation of osteocalcin and insulin resistance in older men and women, The American Journal of Clinical Nutrition 2009, 90, 5, 1, 1230–1235, 10.3945/ajcn.2009.28151

  37. Lenchik L, Register TC, Chsu F, Lohman K, Nicklas BJ, Freedman BI, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51. https://doi.org/10.1016/S8756-3282(03)00237-0.

    Article  CAS  PubMed  Google Scholar 

  38. Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: Osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137–46. https://doi.org/10.1016/j.abb.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  39. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20:230–6.

    Article  CAS  Google Scholar 

  40. Ferron, M., ; Wei, J. ; Yoshizawa, T. ; Del Fattore, A.; DePinho, R.A. ; Teti, A. ;Ducy, P., ; and Karsenty, G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 2010,142, 296–308.

    Article  CAS  Google Scholar 

  41. Mathieu F; Jianwen W; Tatsuya Y; Andrea D. F; Ronald A. D; Anna T; Patricia D; and Gerard K. Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism. 2010, Cell 142, 23, 296–308. Link.

  42. Stafford DW. The vitamin K cycle. J Thromb Haemost. 2005;3:1873–8. https://doi.org/10.1111/j.1538-7836.2005.01419.x.

    Article  CAS  PubMed  Google Scholar 

  43. Yamauchi M, Yamaguchi T, Nawata K, Takaoka S, Sugimoto T. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr. 2010;29:761–5. https://doi.org/10.1016/j.clnu.2010.02.010.

    Article  CAS  PubMed  Google Scholar 

  44. Tomoaki M, Esra A, Jiang H, John FD, Amarnath JK, Carol FE, et al. Disruption of leptin receptor expression in the pancreas directly affects β cell growth and function in mice. J Clin Invest. 2007;117(10):2860–8. https://doi.org/10.1172/JCI30910.

    Article  CAS  Google Scholar 

  45. Covey SD, Rhonda DW, Christine M, Suraj U, Frank H, Ali A, et al. The pancreaticb cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell metabolism. 2006;4:291–302.

    Article  CAS  Google Scholar 

  46. Koitaya N, Sekiguchi M, Tousen Y, Nishide Y, Morita A, Yamauchi J, et al. Low-dose vitamin K-2 (MK-4) supplementation for 12 months improves bone metabolism and prevents forearm bone loss in postmenopausal Japanese women. Journal of bone and mineral metabolism. 2014;32(2):142–50. https://doi.org/10.1007/s00774-013-0472-7.

    Article  CAS  PubMed  Google Scholar 

  47. Booth, SL; Al Rajabi, A. VITAMIN K, Edited by: Litwack, G Book Series: Vitamins and Hormones, Determinants of vitamin K status in humans. 2008, 78, 1-22. Review; Book Chapter DOI: https://doi.org/10.1016/S0083-6729(07)00001-5.

  48. Yuanyang G, Runlin X, Bo X, et al. Effect of vitamin K2 on bone mineral density and serum cathepsin Kin female osteoporosis patients. Tropical journal of pharmaceutical research. 2019;18(1):181–5.

    Article  Google Scholar 

  49. Wen LP, Chen JP, Duan LL, Li SZ. Vitamin K-dependent proteins involved in bone and cardiovascular healt. Molecular medicine reports. 2018;18(1):3–15. https://doi.org/10.3892/mmr.2018.8940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dashti HS, Shea MK, Smith CE, Tanaka T, Hruby A, Richardson K, et al. Meta-analysis of genome-wide association studies for circulating phylloquinone concentrations. American journal of clinical nutrition. 2014;100(6):1462–9. https://doi.org/10.3945/ajcn.114.093146.

    Article  CAS  PubMed  Google Scholar 

  51. Knapen, M. H. J; Braam, LAJLM; Teunissen, K. J; Zwijsen, R. M. L; Theuwissen, E; Vermeer, C. Yogurt drink fortified with menaquinone-7 improves vitamin K status in a healthy population. Journal of nutritional science. 2015, 4, UNSP e35: https://doi.org/10.1017/jns.2015.25.

  52. Jeong HM, Cho DH, Jin YH, Chung JO, Chung MY, Chung DJ, et al. Inhibition of Osteoblastic Differentiation by Warfarin and 18-alpha-Glycyrrhetinic Acid. Archives of pharmacal research. 2011;34(8):1381–7. https://doi.org/10.1007/s12272-011-0819-3.

    Article  CAS  PubMed  Google Scholar 

  53. Van Ballegooijen AJ, Cepelis A, Visser M, Brouwer IA, van Schoor NM, Beulens JW. Joint Association of Low Vitamin D and Vitamin K Status with Blood Pressure and Hypertension. Hypertension. 2017;69(6):1165. https://doi.org/10.1161/HYPERTENSIONAHA.116.08869.

    Article  CAS  PubMed  Google Scholar 

  54. Lin, X. Z; Brennan-Speranza, T. C; Levinger, I; Yeap, BB. Undercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regulation of Insulin Sensitivity. NUTRIENTS. 2018, 10, 7, Article Number: 847. DOI: https://doi.org/10.3390/nu10070847.

  55. Dahlberg, S; Ede, J; Schurgers, L; Vermeer, C; Kander, T; Klarin, B; Schott, U. Desphospho-Uncarboxylated Matrix-Gla Protein Is Increased Postoperatively in Cardiovascular Risk Patients. Nutrients. 2018, 10, 1, Article Number: 46, DOI: https://doi.org/10.3390/nu10010046.

  56. Villa JKD, Diaz MAN, Pizziolo VR, Martino HSD. Effect of vitamin K in bone metabolism and vascular calcification: A review of mechanisms of action and evidences. Critical reviews in food science and nutrition. 2017;57(18):3959–70. https://doi.org/10.1080/10408398.2016.1211616.

    Article  CAS  PubMed  Google Scholar 

  57. Verma H, Garg R. Effect of Vitamin K Supplementation on Cardiometabolic Risk Factors: A Systematic Review and Meta-Analysis. Endocrine metabolic & immune disorders-drug targets. 2019;19(1):13–25. https://doi.org/10.2174/1871530318666180703125007.

    Article  CAS  Google Scholar 

  58. Okuyama H, Langsjoen PH, Ohara N, Hashimoto Y, Hamazaki T, Yoshida S, et al. M. Medicines and Vegetable Oils as Hidden Causes of Cardiovascular Disease and Diabetes. Pharmacology. 2016;98:3–4, 134-170. https://doi.org/10.1159/000446704.

    Article  CAS  Google Scholar 

  59. Stenvinkel P, Luttropp K, McGuinness D, Witasp A, Qureshi AR, Wernerson A, et al. G.CDKN2A/p16INK4(alpha) expression is associated with vascular progeria in chronic kidney disease. AGING-US. 2017;9(2):494–507. https://doi.org/10.18632/aging.101173.

    Article  CAS  Google Scholar 

  60. Radulescu D, Stroescu AEB, Pricop C, Geavlete B, Negrei C, Bratu O, et al. Vitamin K Influence on Cardiovascular Mortality in Chronic Hemodialysed Patients. Revista de chimie. 2017;68(1):52–4.

    Article  CAS  Google Scholar 

  61. Kurnatowska I, Grzelak P, Masajtis-Zagajewska A, Kaczmarska M, Stefanczyk L, Vermeer C, et al. Plasma Desphospho-Uncarboxylated Matrix Gla Protein as a Marker of Kidney Damage and Cardiovascular Risk in Advanced Stage of Chronic Kidney Disease. Kidney & blood pressure research. 2016;41(3):231–9. https://doi.org/10.1159/000443426.

    Article  CAS  Google Scholar 

  62. Schwalfenberg GK. Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. Journal of nutrition and metabolism. 2017;2017:6. https://doi.org/10.1155/2017/6254836.

    Article  CAS  Google Scholar 

  63. Namba S, Yamaoka-Tojo M, Kakizaki R, Nemoto T, Fujiyoshi K, Hashikata T, et al. Effects on bone metabolism markers and arterial stiffness by switching to rivaroxaban from warfarin in patients with atrial fibrillation. Heart Vessel. 2017;32(8):977–82. https://doi.org/10.1007/s00380-017-0950-2.

    Article  Google Scholar 

  64. Zhang Y, Yin J, Ding H, Zhang C, Gao YS. Vitamin K2 Ameliorates Damage of Blood Vessels by Glucocorticoid: a Potential Mechanism for Its Protective Effects in Glucocorticoid-induced Osteonecrosis of the Femoral Head in a Rat Model. Int J Biol Sci. 2016;12(7):776–85. https://doi.org/10.7150/ijbs.15248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EA writing—designed and prepared the first draft of the manuscript. MA writing—rewrote and edited the manuscript scientifically. MA & EA reviewed it. MA drafted the Figs. 1, 2 and 3. EA drafted the Figs. 4 and 5. MA & EA reviewed and approved the final draft of the manuscript.

Corresponding author

Correspondence to Ebtesam Abdullah Al-Suhaimi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Suhaimi, E.A., Al-Jafary, M.A. Endocrine roles of vitamin K-dependent- osteocalcin in the relation between bone metabolism and metabolic disorders. Rev Endocr Metab Disord 21, 117–125 (2020). https://doi.org/10.1007/s11154-019-09517-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09517-9

Keywords

Navigation