Skip to main content
Log in

Prospective Refractory Materials For Smelting and Sintering Alloys Based on Titanium and Other Transition Metals. Part 1. Calcium Zirconate Synthesis for Ceramic Products

  • Published:
Refractories and Industrial Ceramics Aims and scope

Information about calcium zirconate is presented. The areas of its use and methods of obtaining it are considered. It has been established that the simplest and most cost-effective method is solid-phase synthesis from calcium carbonate and zirconium dioxide. Heat treatment of a mixture of the initial powders at different temperatures was carried out. It has been established that 1300°C for 4 hours is enough for completeness of the synthesis. The resulting powder has activity to sintering and is suitable for manufacturing technical ceramics and refractories, including for smelting and sintering materials made of titanium and titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. S. Schaffoner, C. G. Aneziris, H. Berek, B. Rotmann, and B. Friedrich, “Investigating the corrosion resistance of calcium zirconate in contact with titanium alloy melts,” J. Eur. Ceram. Soc., 35(1), 259 – 266 (2015).

    Article  Google Scholar 

  2. S. K. Kim, T. K. Kim, M. G. Kim, T.W. Hong, and Y. Kim, “Investment casting of titanium alloys with CaO crucible and CaZrO3 mold,” Lightweight Alloys Aerosp. Appl., Proc. Symp., 2001, pp. 251 – 260.

  3. S. Schaffoner, T. Qin, J. Fruhstorfer, C. Jahn, G. Schmidt, H. Jansen, and C. G. Aneziris, “Refractory castables for titanium metallurgy based on calcium zirconate,” Mater. Des., 148, 78 – 86 (2018).

    Article  CAS  Google Scholar 

  4. U. E. Klotz, C. Legner, F. Bulling, et al., “Investment casting of titanium alloys with calcium zirconate moulds and crucibles,” Int. J. Adv. Manuf. Technol., 103, 343 – 353 (2019).

    Google Scholar 

  5. S. Schaffoner, J. Fruhstorfer, C. Fassauer, L. Freitag, C. Jahn, and C. G. Aneziris, “Advanced refractories for titanium metallurgy based on calcium zirconate with improved thermomechanical properties,” J. Eur. Ceram. Soc., 39(14), 4394 – 4403 (2019).

    Article  CAS  Google Scholar 

  6. S. Schaffoner, “Reactions of alkaline earth zirconate refractories with titanium alloys,” MATEC Web Conf., 321(10012), 1 – 11 (2020).

    Google Scholar 

  7. M. R. Nadler and E. Fitzsimmons, “Preparation and properties of calcium zirconate,” J. Am. Ceram. Soc., 38(6), 214 – 217 (1955).

    Article  CAS  Google Scholar 

  8. L. A. Reznitskii and A. S. Guzei, Usp. Khim., “Thermodynamic properties of alkaline earth titanates, zirconates, and hafnates,” XLVII(2), 177 – 211 (1978).

  9. Y. Du, Z. Jin, and P. Huang, “Thermodynamic calculation of the zirconia-calcia system,” J. Am. Ceram. Soc., 75(11), 3040 – 3048 (2005).

    Article  Google Scholar 

  10. Phase Equilibria Diagrams [Electronic resource], Electronic Data and Program, ACerS-NIST, CD-ROM Database, v.3.1.0.

  11. R. G. Iano, “Temperature and atmosphere influence during combustion synthesis of metal oxide (nano) powders,” Habilitation Thesis, Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 2015, p. 105.

  12. H. J. A. Koopmans, G. M. H. Van de Velde, and P. J. Gellings, “Powder neutron diffraction study of the perovskites CaTiO3 and CaZrO3,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 39, 1323 – 1325 (1983).

    Article  Google Scholar 

  13. T. I. Hou and W. M. Kriven, “Mechanical properties and microstructure of Ca2SiO4–CaZrO3 composites,” J. Am. Ceram. Soc., 77(1), 65 – 72 (1994).

    Article  CAS  Google Scholar 

  14. G. Rog, M. Dudek, A. Kozlowska-Rog, and M. Bucko, “Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells,” Electrochim. Acta, 47(28), 4523 – 4529 (2002).

    Article  CAS  Google Scholar 

  15. S. Serena, M. A. Sainz, and A. Caballero, “Corrosion behavior of MgO/CaZrO3 refractory matrix by clinker,” J. Eur. Ceram. Soc., 24(8), 2399 – 2406 (2004).

    Article  CAS  Google Scholar 

  16. Y. Suzuki, P. E. D. Morgan, and T. Ohji, “New uniformly porous CaZrO3 / MgO composites with three-dimensional network structure from natural dolomite,” J. Am. Ceram. Soc., 83(8), 2091 – 2093 (2000).

    Article  CAS  Google Scholar 

  17. D. Janke, “Oxygen probes based on calcia-doped hafnia or calcium zirconate for use in metallic melts,” Metall. Trans. B, 13(2), 227 – 235 (1982).

    Article  Google Scholar 

  18. T. Yajima, H. Kazcoka, T. Yogo, and H. Iwahara, “Proton conduction in sintered oxides based on CaZrO3,” Solid State Ionics, 47(3 – 4), 271 – 275 (1991).

  19. I. E. Gonenli and A. C. Tas, “Chemical synthesis of pure and Gd-doped CaZrO3 powders,” J. Eur. Ceram. Soc., 19(13 – 14), 2563 – 2567 (1999).

  20. M. Pollet, M. Daturi, and S. Marinel, “Vibrational spectroscopy study of the lattice defects in CaZrO3 ceramics,” J. Eur. Ceram. Soc., 24(6), 1805 – 1809 (2004).

    Article  CAS  Google Scholar 

  21. C. S. Prasanth, H. P. Kumar, R. Pazhani, S. Solomon, and J. K. Thomas, “Synthesis, characterization and microwave dielectric properties of nanocrystalline CaZrO3 ceramics,” J. Alloys. Compd., 464(1 – 2), 306 – 309 (2008).

  22. T. Yu,W. Zhu, C. Chen, X. Chen, and R. G. Krishnan, “Preparation and characterization of solgel derived CaZrO3 dielectric thin films for high-k applications,” Phys. B, 348(1 – 4), 440 – 445 (2004).

  23. X. Y. Qiu, H. W. Liu, F. F. Fang, M. J. Ha, X. H. Zhou, and J.-M. Liu, “Thermal stability and dielectric properties of ultrathin CaZrOx films prepared by pulsed laser deposition,” Appl. Phys. A, 81(7), 1431 – 1434 (2005).

    Article  CAS  Google Scholar 

  24. X. X. Y. Qiu, H. W. Liu, F. Fang, M. J. Ha, Z. G. Liu, and J.-M. Liu, “Interfacial properties of high-k dielectric CaZrOx films deposited by pulsed laser deposition,” Appl. Phys. Lett., 88(18), Art. No. 182907 (2006).

  25. S. Schaffoner, C. G. Aneziris, H. Berek, J. Hubalkova, and A. Priese, “Fused calcium zirconate for refractory applications,” J. Eur. Ceram. Soc., 33(15 – 16), 3411 – 3418 (2013).

  26. C. Baudin, P. Pena, A. Obregon, and J. L. Rodriguez-Galicia, “Mechanical behaviour of MgO–CaZrO3-based refractories for cement kilns,” Adv. Sci. Technol., 70, 47 – 52 (2010).

    Article  CAS  Google Scholar 

  27. S. Schaffoner, J. Fruhstorfer, C. Fassauer, L. Freitag, C. Jahn, and C. G. Aneziris, “Influence of in situ phase formation on properties of calcium zirconate refractories,” J. Eur. Ceram. Soc., 37(1), 305 – 313 (2017).

    Article  Google Scholar 

  28. L. Freitag, S. Schaffoner, N. Lippert, C. Fassauer, C. G. Aneziris, C. Legner, and U. E. Klotz, “Silica-free investment casting molds based on calcium zirconate,” Ceram. Int., 43(9), 6807 – 6814 (2017).

    Article  CAS  Google Scholar 

  29. M.-W. Lu, K.-L. Lin, and C.-C. Lin, “Investigation of the interactions between titanium and calcium zirconium oxide (CaZrO3) ceramics modified with alumina,” Process. Appl. Ceram., 13(1), 79 – 88 (2019).

    Article  CAS  Google Scholar 

  30. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, “Zirconates as new materials for thermal barrier coatings,” J. Am. Ceram. Soc., 83(8), 2023 – 2028 (2000).

    Article  CAS  Google Scholar 

  31. C. Jahn, S. Schaffoner, C. Ode, H. Jansen, and C. G. Aneziris, ”Investigation of calcium zirconate formation by sintering zirconium dioxide with calcium hydroxide,” Ceram. Int., 44(10), 11274 – 11281 (2018).

    Article  CAS  Google Scholar 

  32. M. R. Nadler and E. S. Fitzsimmons, “Preparation and properties of calcium zirconate,” J. Am. Ceram. Soc., 38(6), 214 – 217 (1955).

    Article  CAS  Google Scholar 

  33. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, “Protonic conduction in calcium, strontium and barium zirconates,” Solid State Ionics, 61(1 – 3), 65 – 69 (1993).

  34. V. N. Shumenko, V. A. Kolenkova, and M. N. Dorokhina, “Reaction of baddeleyite with calcium oxide and carbonate,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 3, 96 – 100 (1974).

  35. E. K. Keler and N. A. Godina, “Solid-state reactions of zirconium dioxide with magnesium, calcium, and barium oxides,” Ogneupory, No. 9, 416 – 426 (1953).

  36. G. V. Bois, E. I. Gindin, N. A. Mikhailova, et al., “Reaction of ZrO2 with carbonates of alkaline earth metals,” 12(3), 456 – 460 (1976).

  37. G. Rog, M. Dudek, A. Kozlowska-Rog, and M. Bucko, “Calcium zirconate: preparation, properties and application to the solid oxide galvanic cells,” Electrochim. Acta, 47(28), 4523 – 4529 (2002).

    Article  CAS  Google Scholar 

  38. Song Z., Li Q., Ma D., Wen J., Yuan F., and Deng S., CN Pat. 1420103, Int. Cl.7 C04B35/48, 35/484, “Method for producing electric smelting calcium zirconate,” Zhenzhong Electric Smelting Zi, No. 2001145519; Appl. Dec. 27, 2001; Publ. May 28, 2003.

  39. I. N. Belyaev, V. I. Lupeiko, I. Nalbandyan, and T. I. Efremova, “Synthesis of alkaline earth metal titanates and zirconates from carbonates and dioxides in the presence of ion melts,” Zh. Neorg. Khim., 24(4), 881 – 884 (1979).

    CAS  Google Scholar 

  40. Z. Li, W. E. Lee, and S. Zhang, “Low-temperature synthesis of CaZrO3 powder from molten salts,” J. Am. Ceram. Soc., 90(2), 364 – 368 (2007).

    Article  CAS  Google Scholar 

  41. R. Fazli, M. Fazli, F. Golestani-fard, and A. Mirhabibi, “The effects of raw materials particle size and salt type on formation of nano-CaZrO3 from molten salts,” Ceram. Int., 38(7), 5775 – 5781 (2013).

    Article  Google Scholar 

  42. W. J. Lee, A.Wakahara, and B. H. Kim, “Decreasing of CaZrO3 sintering temperature with glass frit addition,” Ceram. Int., 31(4), 521 – 524 (2005).

    Article  CAS  Google Scholar 

  43. T. Yu,W. Zhu, C. Chen, X. Chen, and R. G. Krishnan, “Preparation and characterization of solgel derived CaZrO3 dielectric thin films for high-k applications,” Phys. B, 348(1 – 4), 440 – 445 (2004).

  44. J. Brzezinska-Miecznik, K. Haberko, and M. M. Bucko, “Barium zirconate ceramic powder synthesis by the coprecipitation–calcination technique,” Mater. Lett., 56(3), 273 – 278 (2002).

    Article  CAS  Google Scholar 

  45. I. E. Gonenli and A. C. Tas, “Chemical synthesis of pure and Gd-doped CaZrO3 powders,” J. Eur. Ceram. Soc., 19(13 – 14), 2563 – 2567 (1999).

  46. R. Ianos and P. Barvinschi, “Solution combustions synthesis of calcium zirconate, CaZrO3, powders,” J. Solid State Chem., 183(3), 491 – 496 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Ikonnikov.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 7 – 11, February, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasniy, B.L., Ikonnikov, K.I., Galganova, A.L. et al. Prospective Refractory Materials For Smelting and Sintering Alloys Based on Titanium and Other Transition Metals. Part 1. Calcium Zirconate Synthesis for Ceramic Products. Refract Ind Ceram 63, 55–59 (2022). https://doi.org/10.1007/s11148-022-00680-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00680-2

Keywords

Navigation