Skip to main content
Log in

Modulating Bi2Fe4O9 and its performance in inactivating marine microorganisms

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, Bi2Fe4O9 photocatalysts were prepared using hydrothermal synthesis. Different morphologies of Bi2Fe4O9 with a mullite-type structure were prepared using various hydrothermal synthesis methods while controlling the concentration of the mineralizer NaOH. The characterization of photocatalysts involves the use of various methods such as X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy, and electrochemical impedance spectroscopy. The photocatalytic performance of the samples was evaluated by testing their sterilization effect on natural seawater. The study found that when exposed to simulated sunlight using a small amount of H2O2, Bi2Fe4O9 cubes exhibited exceptional photocatalytic activity in deactivating marine microorganisms. This was attributed to the fact that the primary exposed surface of the Bi2Fe4O9 cubes was (001), which has a low recombination rate of photoelectrons and holes. Electrons can react with H2O2 to generate more hydroxyl radicals, thereby enhancing the photocatalytic sterilization performance. The experiment on free radical capture demonstrated that the ·OH radical was the primary active substance in the sterilization process. This paper introduces a novel concept for the photocatalytic purification of seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article or its supplementary materials.

References

  1. Bai M, Zhang Z, Zhang N, Tian Y, Chen C, Meng X (2012) Treatment of 250 t/h ballast water in oceanic ships using ·OH radicals based on strong electric-field discharge. Plasma Chem Plasma Process 32(4):693–702. https://doi.org/10.1007/s11090-012-9369-9

    Article  CAS  Google Scholar 

  2. Guilbaud J, Wyart Y, Moulin P (2019) Economic viability of treating ballast water of ships by ultrafiltration as a function of the process position. J Mar Sci Technol 24(4):1197–1208. https://doi.org/10.1007/s00773-018-0618-3

    Article  Google Scholar 

  3. Wang Z, Nong D, Countryman AM, Corbett JJ, Warziniack T (2020) Potential impacts of ballast water regulations on international trade, shipping patterns, and the global economy: an integrated transportation and economic modeling assessment. J Environ Manage 275:110892. https://doi.org/10.1016/j.jenvman.2020.110892

    Article  PubMed  Google Scholar 

  4. Bradie JN, Drake DAR, Ogilvie D, Casas-Monroy O, Bailey SA (2021) Ballast water exchange plus treatment lowers species invasion rate in freshwater ecosystems. Environ Sci Technol 55(1):82–89. https://doi.org/10.1021/acs.est.0c05238

    Article  CAS  PubMed  Google Scholar 

  5. Abedini A, Bakar AAA, Larki F, Menon PS, Islam MS, Shaari S (2016) Recent advances in shape-controlled synthesis of noble metal nanoparticles by radiolysis route. Nanoscale Res Lett 11:1–13. https://doi.org/10.1186/s11671-016-1500-z

    Article  CAS  Google Scholar 

  6. Briski E, Gollasch S, David M, Linley RD, Casas-Monroy O, Rajakaruna H, Bailey SA (2015) Combining ballast water exchange and treatment to maximize prevention of species introductions to freshwater ecosystems. Environ Sci Technol 49(16):9566–9573. https://doi.org/10.1021/acs.est.5b01795

    Article  CAS  PubMed  Google Scholar 

  7. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C-Photochem Rev 9(1):1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  8. Herwig RP, Cordell JR, Perrins JC, Dinnel PA, Gensemer RW, Stubblefield WA, Ruiz GM, Kopp JA, House ML, Cooper WJ (2006) Ozone treatment of ballast water on the oil tanker S/T Tonsina: chemistry, biology and toxicity. Mar Ecol Prog Ser 324:37–55. https://doi.org/10.3354/meps324037

    Article  CAS  Google Scholar 

  9. Zhang X, Lv J, Bourgeois L, Cui J, Wu Y, Wang H, Webley PA (2011) Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J Chem 35(4):937–941. https://doi.org/10.1039/c1nj00008j

    Article  CAS  Google Scholar 

  10. Yang W, Ma G, Fu Y, Peng K, Yang H, Zhan X, Yang W, Wang L, Hou H (2022) Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J 429:132381. https://doi.org/10.1016/j.cej.2021.132381

    Article  CAS  Google Scholar 

  11. Chen M, Guo C, Hou S, Lv J, Zhang Y, Zhang H, Xu J (2020) A novel Z-scheme AgBr/P-g-C3N4 heterojunction photocatalyst: excellent photocatalytic performance and photocatalytic mechanism for ephedrine degradation. Appl Catal B-Environ 266:118614. https://doi.org/10.1016/j.apcatb.2020.118614

    Article  CAS  Google Scholar 

  12. Wang Z, Jiang L, Wang K, Li Y, Zhang G (2021) Novel AgI/BiSbO4 heterojunction for efficient photocatalytic degradation of organic pollutants under visible light: interfacial electron transfer pathway, DFT calculation and degradation mechanism study. J Hazard Mater 410:124949. https://doi.org/10.1016/j.jhazmat.2020.124948

    Article  CAS  Google Scholar 

  13. Chien S-WC, Ng D-Q, Kumar D, Lam S-M, Jaffari ZH (2022) Investigating the effects of various synthesis routes on morphological, optical, photoelectrochemical and photocatalytic properties of single-phase perovskite BiFeO3. J Phys Chem Solids 160:110342. https://doi.org/10.1016/j.jpcs.2021.110342

    Article  CAS  Google Scholar 

  14. Kong CPY, Suhaimi NAA, Shahri NNM, Lim J-W, Nur M, Hobley J, Usman A (2022) Auramine O UV photocatalytic degradation on TiO2 nanoparticles in a heterogeneous aqueous solution. Catalysts 12(9):975. https://doi.org/10.3390/catal12090975

    Article  CAS  Google Scholar 

  15. Suhaimi NAA, Shahri NNM, Samat JH, Kusrini E, Lim JW, Hobley J, Usman A (2022) Domination of methylene blue over rhodamine B during simultaneous photocatalytic degradation by TiO2 nanoparticles in an aqueous binary solution under UV irradiation. React Kinet Mech Catal 135(1):511–527. https://doi.org/10.1007/s11144-021-02098-2

    Article  CAS  Google Scholar 

  16. Verinda SB, Muniroh M, Yulianto E, Maharani N, Gunawan G, Amalia NF, Hobley J, Usman A, Nur M (2022) Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis. Heliyon 8(8):e10137. https://doi.org/10.1016/j.heliyon.2022.e10137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zulmajdi SLN, Zamri NII, Yasin HM, Kusrini E, Hobley J, Usman A (2020) Comparative study on the adsorption, kinetics, and thermodynamics of the photocatalytic degradation of six different synthetic dyes on TiO2 nanoparticles. React Kinet Mech Catal 129(1):519–534. https://doi.org/10.1007/s11144-019-01701-x

    Article  CAS  Google Scholar 

  18. Wang F, Zhou F, Zhan S, He Q, Song Y, Zhang C, Lai J (2021) Morphology modulation and performance optimization of nanopetal-based Ag-modified Bi2O2CO3 as an inactivating photocatalytic material. Environ Res 198:111256. https://doi.org/10.1016/j.envres.2021.111256

    Article  CAS  PubMed  Google Scholar 

  19. Ruan Q-J, Zhang W-D (2009) Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J Phys Chem C 113(10):4168–4173. https://doi.org/10.1021/jp810098f

    Article  CAS  Google Scholar 

  20. Wang G, Cheng D, He T, Hu Y, Deng Q, Mao Y, Wang S (2019) Enhanced visible-light responsive photocatalytic activity of Bi25FeO40/Bi2Fe4O9 composites and mechanism investigation. J Mater Sci Mater Electron 30(11):10923–10933. https://doi.org/10.1007/s10854-019-01436-4

    Article  CAS  Google Scholar 

  21. Hu Z-T, Liu J, Yan X, Oh W-D, Lim T-T (2015) Low-temperature synthesis of graphene/Bi2Fe4O9 composite for synergistic adsorption-photocatalytic degradation of hydrophobic pollutant under solar irradiation. Chem Eng J 262:1022–1032. https://doi.org/10.1016/j.cej.2014.10.037

    Article  CAS  Google Scholar 

  22. Rafiq U, Majid K (2020) Mitigating the charge recombination by the targeted synthesis of Ag2WO4/Bi2Fe4O9 composite: the facile union of orthorhombic semiconductors towards efficient photocatalysis. J Alloy Compd 842:155876. https://doi.org/10.1016/j.jallcom.2020.155876

    Article  CAS  Google Scholar 

  23. Yang H, Dai J, Wang L, Lin Y, Wang F, Kang P (2017) A novel approach to prepare Bi2Fe4O9 flower-like spheres with enhanced photocatalytic performance. Sci Rep 7:768. https://doi.org/10.1038/s41598-017-00831-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mikolajczyk A, Malankowska A, Nowaczyk G, Gajewicz A, Hirano S, Jurga S, Zaleska-Medynska A, Puzyn T (2016) Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd-TiO2 nanoparticles. Environ Sci Nano 3(6):1425–1435. https://doi.org/10.1039/c6en00232c

    Article  CAS  Google Scholar 

  25. Sato S, Nakamura R, Abe S (2005) Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A-Gener 284(1–2):131–137. https://doi.org/10.1016/j.apcata.2005.01.028

    Article  CAS  Google Scholar 

  26. Zhao Z, Zhang W, Lv X, Sun Y, Dong F, Zhang Y (2016) Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification. Environ Sci Nano 3(6):1306–1317. https://doi.org/10.1039/c6en00341a

    Article  CAS  Google Scholar 

  27. Dona-Rodriguez JM, Pulido Melian E (2021) Nano-photocatalytic materials: possibilities and challenges. Nanomaterials 11(3):688. https://doi.org/10.3390/nano11030688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580. https://doi.org/10.1039/c2cs35355e

    Article  CAS  PubMed  Google Scholar 

  29. Kirsch A, Murshed MM, Schowalter M, Rosenauer A, Gesing TM (2016) Nanoparticle precursor into polycrystalline Bi2Fe4O9: an evolutionary investigation of structural, morphological, optical, and vibrational properties. J Phys Chem C 120(33):18831–18840. https://doi.org/10.1021/acs.jpcc.6b04773

    Article  CAS  Google Scholar 

  30. Sun S, Wang W, Zhang L, Shang M (2009) Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions. J Phys Chem C 113(29):12826–12831. https://doi.org/10.1021/jp9029826

    Article  CAS  Google Scholar 

  31. Liang S-w, Yang Q (2017) Control-growth and photocatalytic activities of low-dimensional Bi2Fe4O9 crystals. Chin J Chem Phys 30(5):566–570. https://doi.org/10.1063/1674-0068/30/cjcp1704083

    Article  CAS  Google Scholar 

  32. Wu T, Liu L, Pi M, Zhang D, Chen S (2016) Enhanced magnetic and photocatalytic properties of Bi2Fe4O9 semiconductor with large exposed (001) surface. Appl Surf Sci 377:253–261. https://doi.org/10.1016/j.apsusc.2016.03.140

    Article  CAS  Google Scholar 

  33. Sun J, Chi Y, Wang W, Zhan S, Zhou F (2023) Study on the mechanism of inactivation of marine microorganisms by IrO2/ZnWO4 composite photocatalyst. React Kinet Mech Catal. https://doi.org/10.1007/s11144-023-02551-4.10.1007/s11144-023-02551-4

    Article  Google Scholar 

  34. Li M, Zhou F, Zhan S (2022) Effects of hydroxyl groups on the surface of zinc stannate on the photocatalytic inactivation of marine microorganisms. React Kinet Mech Catal 135(4):2195–2205. https://doi.org/10.1007/s11144-022-02243-5

    Article  CAS  Google Scholar 

  35. Chi Y, Bai G, Wang W, Sun J, Zhan S, Jiang W, Zhou F (2024) Oxygen vacancy enhanced photocatalytic performance towards marine microorganisms inactivation over Ag/Bi2O3. React Kinet Mech Catal. https://doi.org/10.1007/s11144-024-02584-3.10.1007/s11144-024-02584-3

    Article  Google Scholar 

  36. Gao W, Tang L, Zhu M, Yuan Y, Guo S, Yin S (2024) Aggregation-based growth of faceted Bi2Fe4O9 micro-cuboids with a remarkable visible light photo-Fenton catalytic activity. CrystEngComm 26(10):1410–1417. https://doi.org/10.1039/d3ce01221b

    Article  CAS  Google Scholar 

  37. Wang X, Zhang M, Tian P, Chin WS, Zhang CM (2014) A facile approach to pure-phase Bi2Fe4O9 nanoparticles sensitive to visible light. Appl Surf Sci 321:144–149. https://doi.org/10.1016/j.apsusc.2014.09.166

    Article  CAS  Google Scholar 

  38. Goldman AR, Fredricks JL, Estroff LA (2017) Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites. J Cryst Growth 468:104–109. https://doi.org/10.1016/j.jcrysgro.2016.09.054

    Article  CAS  Google Scholar 

  39. Tsai C-J, Yang C-Y, Liao Y-C, Chueh Y-L (2012) Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J Mater Chem 22(34):17432–17436. https://doi.org/10.1039/c2jm33859a

    Article  CAS  Google Scholar 

  40. Suhaimi NAA, Kong CPY, Shahri NNM, Nur M, Hobley J, Usman A (2022) Dynamics of diffusion- and immobilization-limited photocatalytic degradation of dyes by metal oxide nanoparticles in binary or ternary solutions. Catalysts. https://doi.org/10.3390/catal12101254

    Article  Google Scholar 

  41. Zhang Q, Gong W, Wang J, Ning X, Wang Z, Zhao X, Ren W, Zhang Z (2011) Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals. J Phys Chem C 115(51):25241–25246. https://doi.org/10.1021/jp208750n

    Article  CAS  Google Scholar 

  42. Tonda S, Kumar S, Kandula S, Shanker V (2014) Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. J Mater Chem A 2(19):6772–6780. https://doi.org/10.1039/c3ta15358d

    Article  CAS  Google Scholar 

  43. Carra I, Malato S, Jimenez M, Maldonado MI, Sanchez Perez JA (2014) Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions. Chem Eng J 235:132–140. https://doi.org/10.1016/j.cej.2013.09.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No.52271340, 51879018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1499 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Ma, H., Sun, J. et al. Modulating Bi2Fe4O9 and its performance in inactivating marine microorganisms. Reac Kinet Mech Cat (2024). https://doi.org/10.1007/s11144-024-02654-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11144-024-02654-6

Keywords

Navigation