Skip to main content
Log in

Simultaneous esterification and transesterification reactions of acidic palm oil catalyzed by zinc stearate

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The production of fatty acid ethyl esters (FAEE) from high acid value palm oil (APO) was investigated. Reactions were carried out in a single step (simultaneous esterification and transesterification—SET) using zinc stearate as the catalyst precursor. Zinc stearate was characterized for its structural patterns and functional groups before and after SET using X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis (TG), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and gas chromatography (GC). The effects of SET parameters such as the ethanol-to-APO molar ratio, the reaction temperature, and the amount of catalyst were investigated and pre-optimized using a Central Composite Design (CCD). The presence of the catalyst proved to be a significant parameter, contributing 90.4% of the FAEE content compared to 65.9% of the FAEE content under the same reaction conditions in its absence. The best APO-to-FAEE yield of 88.6% was achieved using an ethanol-to-APO molar ratio of 12:1 and 10 wt% catalyst at 180 °C for 120 min. Under these conditions, the predicted and experimental FAEE yields were 88.5% and 88.6%, respectively. The R-squared value of the CCD mathematical model was 0.9989, indicating its high predictability and goodness of fit. Zinc stearate maintained its catalytic activity in the SET of APO for five consecutive reuse cycles, but changes in the catalyst chemical composition were observed mainly due to the conversion of zinc stearate to zinc palmitate. This new lamellar structure was maintained after being formed without changes in catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The relevant data from this research were included in the article and also in the supplementary material.

References

  1. Kochepka DM, Dill LP, Couto GH et al (2015) Production of fatty acid ethyl esters from waste cooking oil using Novozym 435 in a solvent-free system. Energy Fuels 29:8074–8081. https://doi.org/10.1021/acs.energyfuels.5b02116

    Article  CAS  Google Scholar 

  2. Escorsim AM, Hamerski F, Ramos LP et al (2019) Multifunctionality of zinc carboxylate to produce acylglycerols, free fatty acids and fatty acids methyl esters. Fuel 244:569–579. https://doi.org/10.1016/j.fuel.2019.01.178

    Article  CAS  Google Scholar 

  3. Ramos LP, Kothe V, César-Oliveira MAF et al (2017) Biodiesel: raw materials, production technologies and fuel properties. Rev Virtual Quimíca. https://doi.org/10.21577/1984-6835.20170020

    Article  Google Scholar 

  4. Naylor RL, Higgins MM (2017) The political economy of biodiesel in an era of low oil prices. Renew Sustain Energy Rev 77:695–705

    Article  Google Scholar 

  5. Dill LP, Kochepka DM, Krieger N, Ramos LP (2019) Synthesis of fatty acid ethyl esters with conventional and microwave heating systems using the free lipase B from candida antarctica. Biocatal Biotransform 37:25–34. https://doi.org/10.1080/10242422.2018.1443079

    Article  CAS  Google Scholar 

  6. Canakci M, Monyem A, Van GJ (1999) A o p b. Am Soc Agric Eng 42:1565–1572

    CAS  Google Scholar 

  7. Cordeiro CS, Arizaga GGC, Ramos LP, Wypych F (2008) A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils. Catal Commun 9:2140–2143. https://doi.org/10.1016/j.catcom.2008.04.015

    Article  CAS  Google Scholar 

  8. Hamerski F, Corazza ML (2014) LDH-catalyzed esterification of lauric acid with glycerol in solvent-free system. Appl Catal A Gen 475:242–248. https://doi.org/10.1016/j.apcata.2014.01.040

    Article  CAS  Google Scholar 

  9. De Paiva EJM, Sterchele S, Corazza ML et al (2015) Esterification of fatty acids with ethanol over layered zinc laurate and zinc stearate— kinetic modeling. Fuel 153:445–454. https://doi.org/10.1016/j.fuel.2015.03.021

    Article  CAS  Google Scholar 

  10. Reinoso DM, Ferreira ML, Tonetto GM (2013) Study of the reaction mechanism of the transesterification of triglycerides catalyzed by zinc carboxylates. J Mol Catal A Chem 377:29–41. https://doi.org/10.1016/j.molcata.2013.04.024

    Article  CAS  Google Scholar 

  11. Macierzanka A, Szelag H (2004) Esterification kinetics of glycerol with fatty acids in the presence of zinc carboxylates: preparation of modified acylglycerol emulsifiers. Ind Eng Chem Res 43:7744–7753. https://doi.org/10.1021/ie040077m

    Article  CAS  Google Scholar 

  12. Cordeiro CS, Da Silva FR, Wypych F, Ramos LP (2011) Catalisadores heterogêneos para a produção de monoésteres graxos (biodiesel). Quim Nova 34:477–486

    Article  CAS  Google Scholar 

  13. Ramos LP, Brugnago RJ, Da Silva FR et al (2015) Esterificação e transesterificação simultâneas de óleos ácidos utilizando carboxilatos lamelares de zinco como catalisadores bifuncionais. Quim Nova 38:46–54. https://doi.org/10.5935/0100-4042.20140274

    Article  CAS  Google Scholar 

  14. Nielsen RB, Kongshaug KO, Fjellvåg H (2008) Delamination, synthesis, crystal structure and thermal properties of the layered metal-organic compound Zn(C12H14O4). J Mater Chem 18:1002–1007. https://doi.org/10.1039/b712479a

    Article  CAS  Google Scholar 

  15. Cordeiro CS (2008) Compostos lamelares como catalisadores heterogêneos em reações de (trans)esterificação (m)etílica. Federal University of Paraná, Brazil

  16. Barman S, Vasudevan S (2006) Contrasting melting behavior of zinc stearate and zinc oleate. J Phys Chem B 110:651–654. https://doi.org/10.1021/jp055814m

    Article  PubMed  CAS  Google Scholar 

  17. Nguyen HD, Thi Nguyen MH, Nguyen TD, Nguyen PT (2016) Nephelium lappaceum oil: a low-cost alternative feedstock for sustainable biodiesel production using magnetic solid acids. Environ Prog Sustain Energy 35:603–610. https://doi.org/10.1002/ep.12254

    Article  CAS  Google Scholar 

  18. Dawodu FA, Ayodele OO, Xin J, Zhang S (2014) Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. J Chem Technol Biotechnol 89:1898–1909. https://doi.org/10.1002/jctb.4274

    Article  CAS  Google Scholar 

  19. Zillillah NTA, Li Z (2014) Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chem 16:1202–1210. https://doi.org/10.1039/c3gc41379a

    Article  CAS  Google Scholar 

  20. Kim M, DiMaggio C, Salley SO, Simon Ng KY (2012) A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresour Technol 118:37–42. https://doi.org/10.1016/j.biortech.2012.04.035

    Article  PubMed  CAS  Google Scholar 

  21. Gombotz K, Parette R, Austic G et al (2012) MnO and TiO solid catalysts with low-grade feedstocks for biodiesel production. Fuel 92:9–15. https://doi.org/10.1016/j.fuel.2011.08.031

    Article  CAS  Google Scholar 

  22. Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B Environ 85:86–91. https://doi.org/10.1016/j.apcatb.2008.07.005

    Article  CAS  Google Scholar 

  23. Alvarez Serafni MS, Tonetto GM (2019) Production of fatty acid methyl esters from an olive oil industry waste. Brazilian J Chem Eng 36:285–297. https://doi.org/10.1590/0104-6632.20190361s20170535

    Article  CAS  Google Scholar 

  24. Reinoso DM, Damiani DE, Tonetto GM (2015) Efficient production of biodiesel from low-cost feedstock using zinc oleate as catalyst. Fuel Process Technol 134:26–31. https://doi.org/10.1016/j.fuproc.2015.03.003

    Article  CAS  Google Scholar 

  25. Yusoff MFM, Xu X, Guo Z (2014) Comparison of fatty acid methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. JAOCS J Am Oil Chem Soc 91:525–531. https://doi.org/10.1007/s11746-014-2443-0

    Article  CAS  Google Scholar 

  26. Cabral PS, Filho AZ, Voll FAP, Corazza ML (2014) Kinetis of enzimatic hidrolysis of olive oil im batch and fed-batch system. Appl Biochem Biotechnol 173:1336–1348

    Article  PubMed  CAS  Google Scholar 

  27. José C, Austic GB, Bonetto RD et al (2013) Investigation of the stability of Novozym® 435 in the production of biodiesel. Catal Today 213:73–80

    Article  Google Scholar 

  28. Menezes RS, Leles MIG, Soares AT et al (2013) Avaliação da potencialidade de microalgas dulcícolas como fonte de matéria-prima graxa para a produção de biodiesel. Quim Nova 36:10–15. https://doi.org/10.1590/S0100-40422013000100003

    Article  CAS  Google Scholar 

  29. dos Santos KC, Hamerski F, Pedersen Voll FA, Corazza ML (2018) Experimental and kinetic modeling of acid oil (trans)esterification in supercritical ethanol. Fuel 224:489–498. https://doi.org/10.1016/j.fuel.2018.03.102

    Article  CAS  Google Scholar 

  30. Bondioli P, Della Bella L (2005) An alternative spectrophotometric method for the determination of free glycerol in biodiesel. Eur J Lipid Sci Technol 107:153–157. https://doi.org/10.1002/ejlt.200401054

    Article  CAS  Google Scholar 

  31. Dugo G, La Pera L, La Torre GL, Giuffrida D (2004) Determination of Cd(II), Cu(II), Pb(II), and Zn(II) content in commercial vegetable oils using derivative potentiometric stripping analysis. Food Chem 87:639–645. https://doi.org/10.1016/j.foodchem.2003.12.035

    Article  CAS  Google Scholar 

  32. dos Anjos VE, Abate G, Grassi MT (2017) Determination of labile species of As(V), Ba, Cd Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite. Anal Bioanal Chem 409:1963–1972. https://doi.org/10.1007/s00216-016-0144-2

    Article  PubMed  CAS  Google Scholar 

  33. Taylor RA, Ellis HA (2007) Room temperature molecular and lattice structures of a homologous series of anhydrous zinc(II) n-alkanoate. Spectrochim Acta Part A Mol Biomol Spectrosc 68:99–107. https://doi.org/10.1016/j.saa.2006.11.007

    Article  CAS  Google Scholar 

  34. Kucek KT, César-Oliveira MAF, Wilhelm HM, Ramos LP (2007) Ethanolysis of refined soybean oil assisted by sodium and potassium hydroxides. JAOCS J Am Oil Chem Soc 84:385–392. https://doi.org/10.1007/s11746-007-1048-2

    Article  CAS  Google Scholar 

  35. Gönen M, Balköse D, Inal F, Ülkü S (2005) Zinc stearate production by precipitation and fusion processes. Ind Eng Chem Res 44:1627–1633. https://doi.org/10.1021/ie049398o

    Article  CAS  Google Scholar 

  36. Barman S, Vasudevan S (2006) Melting of saturated fatty acid zinc soaps. J Phys Chem B 110:22407–22414. https://doi.org/10.1021/jp064306p

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil; grant numbers 309506/2017-4 and 315930/2021-7), by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) through the Finance Code 001 and the Brazilian Internationalization Program—CAPES/PrInt for UFPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiney Soares Cordeiro.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 639 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escorsim, A.M., Hamerski, F., Ramos, L.P. et al. Simultaneous esterification and transesterification reactions of acidic palm oil catalyzed by zinc stearate. Reac Kinet Mech Cat 137, 231–250 (2024). https://doi.org/10.1007/s11144-023-02543-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02543-4

Keywords

Navigation