Skip to main content
Log in

Kinetics of Enzymatic Hydrolysis of Olive Oil in Batch and Fed-batch Systems

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work reports experimental data, kinetic modeling, and simulations of enzyme-catalyzed hydrolysis of olive oil. This reaction was performed in batch system and an ordered-sequential Bi Bi model was used to model the kinetic mechanism. A fed-batch system was proposed and experimental data were obtained and compared to the simulated values. The kinetic model used was able to correlate the experimental data, in which a satisfactory agreement between the experimental data and modeling results was obtained under different enzyme concentration and initial free water content. Therefore, the modeling allowed a better understanding of the reaction kinetics and affords a fed-batch simulation for this system. From the results obtained, it was observed that the fed-batch approach showed to be more advantageous when compared to the conventional batch system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAG:

Diacylglycerol

FFA:

Free fatty acid

G:

Glycerol

H2O:

Water in the oil phase

H2Oins :

Water not solubilized in the oil

K r (r = 1,…,7):

Apparent rate constants (g-substrate2/mmol2)

MAG:

Monoacylglycerol

NOBS:

Number of observations

M FFA :

Molar mass of the free fatty acid of olive oil (g/mol)

M DAG :

Molar mass of the diacylglycerol of olive oil (g/mol)

M MAG :

Molar mass of the monoacylglycerol of olive oil (g/mol)

M TAG :

Molar mass of the triacylglycerol of olive oil (g/mol)

rmsd:

Root-mean-square deviation

TAG:

Triacylglycerol

U r (r = 1,…,6):

Apparent rate constants (g-substrate/(h mmol))

[x oilsurf ]:

Molar fraction of surfactants in the oil

[w expio ]:

Experimental mass fraction of pseudo-component i in the observation o

[w calcio ]:

Calculated mass fraction of pseudo-component i in the observation o

[DAG]:

Diacylglycerol concentration (mmol/g-substrate)

[FFA]:

Free fatty acids concentration (mmol/g-substrate)

[H2O]:

Water concentration in the oil phase (mmol/g-substrate)

[H2O]0 :

Initial water concentration in the oil phase (mmol/g-substrate)

[H2Oins]:

Concentration of water not solubilized in the oil phase (mmol/g-substrate)

[G]:

Glycerol concentration (mmol/g-substrate)

[MAG]:

Monoacylglycerol concentration (mmol/g-substrate)

[TAG]:

Triacylglycerol concentration (mmol/g-substrate)

References

  1. Babicz, I., Leite, S. G. F., Souza, R. O. M. A., & Antunes, O. A. C. (2010). Ultrasonics Sonochemistry, 17, 4–6.

    Article  CAS  Google Scholar 

  2. Cheong, L. Z., Tan, C. P., Long, K., Yussof, M. S. A., Arifin, N., Lo, K., & Lai, O. M. (2007). Food Chemistry, 105, 1614–1622.

    Article  CAS  Google Scholar 

  3. Katsuragi, Y., Yasukawa, T., Matsuo, N., Flickinger, B. D., Tokimitsu, I., Matlock, M. G., Yasukawa, T., & Katsuragi, Y. (2004). Diacylglycerols. In Diacylglycerol oil (pp. 1–15). Champaign, Illinois: AOCS.

    Chapter  Google Scholar 

  4. Voll, F. A. P., Krüger, R. L., Castilhos, F., Cardozo Filho, L., Cabral, V., Ninow, J. L., & Corazza, M. L. (2011). Biochemical Engineering Journal, 56, 107–115.

    Article  CAS  Google Scholar 

  5. Krüger, R. L., Valério, A., Balen, M., Ninow, J. L., Oliveira, J. V., Oliveira, D., & Corazza, M. L. (2010). European Journal of Lipid Science and Technology, 112, 921–927.

    Article  Google Scholar 

  6. Yanai, H., Tomono, Y., Ito, K., Furutani, N., Yoshida, H., & Tada, N. (2007). Nutrition Journal, 6, 43–49.

    Article  Google Scholar 

  7. Fiametti, K. G., Rovani, S., Oliveira, D., Corazza, M. L., Treichel, H., & Oliveira, J. V. (2009). Industrial & Engineering Chemistry Research, 48, 708–712.

    Article  CAS  Google Scholar 

  8. Kristensen, J. B., Xu, X., & Mu, H. (2005). Journal of the American Oil Chemists Society, 82, 329–334.

    Article  CAS  Google Scholar 

  9. Castro, H. F., Mendes, A. A., Santos, J. C., & Aguiar, C. L. (2004). Quimica Nova, 27, 146–156.

    Article  Google Scholar 

  10. Satyarthi, J. K., Srinivas, D., & Ratnasamy, P. (2011). Applied Catalysis A: General, 391, 427–435.

    Article  CAS  Google Scholar 

  11. Matos, L. M. C., Leal, I. C. R., & Souza, R. O. M. A. (2011). Journal of Molecular Catalysis B: Enzymatic, 72, 36–39.

    Article  CAS  Google Scholar 

  12. Phuah, E.-T., Lai, O.-M., Choong, T. S.-Y., Tan, C.-P., & Lo, S.-K. (2012). Journal of Molecular Catalysis B: Enzymatic, 78, 91–97.

    Article  CAS  Google Scholar 

  13. Awadallak, J. A., Voll, F. A. P., Ribas, M. C., Silva, C., Cardozo-Filho, L., & Silva, E. A. (2013). Ultrasonics Sonochemistry, 20, 1002–1007.

    Article  CAS  Google Scholar 

  14. Pawongrat, R., Xu, X., & H-Kittikun, A. (2007). Food Chemistry, 104, 251–258.

    Article  CAS  Google Scholar 

  15. Chatterjee, T., & Bhattacharyya, D. K. (1998). Biotechnology Letters, 20, 865–868.

    Article  CAS  Google Scholar 

  16. Valério, A., Krüger, R. L., Ninow, J. L., Corazza, F. C., Oliveira, D., Oliveira, J. V., & Corazza, M. L. (2009). Journal of Agriculture and Food Chemistry, 57, 8350–8356.

    Article  Google Scholar 

  17. Rendón, X., López-Munguía, A., & Castillo, E. (2001). Journal of the American Oil Chemists Society, 78, 1061–1066.

    Article  Google Scholar 

  18. Cheirsilp, B., Kaewthong, W., & H-Kittikun, A. (2007). Biochemical Engineering Journal, 35, 71–80.

    Article  CAS  Google Scholar 

  19. Villeneuve, P., Muderhwa, J. M., Graille, J. M., & Haas, M. J. (2000). Journal of Molecular Catalysis B: Enzymatic, 9, 113–148.

    Article  CAS  Google Scholar 

  20. Freitas, L., Bueno, T., Perez, V. H., & Castro, H. F. (2008). Quimica Nova, 31, 1514–1521.

    Article  CAS  Google Scholar 

  21. Liguori, R., Amore, A., & Faraco, V. (2013). Applied Microbiology and Biotechnology, 97(14), 6129–6147.

    Article  CAS  Google Scholar 

  22. Santos, J. S. (2011). PhD thesis, Federal University of Santa Catarina, Santa Catarina, Brazil. (In Portuguese).

  23. Voll, F. A. P., Zanette, A. F., Cabral, V. F., Dariva, C., Souza, R. O. M. A., Cardozo-Filho, L., & Corazza, M. L. (2012). Applied Biochemistry and Biotechnology, 168, 1121–1142.

    Article  CAS  Google Scholar 

  24. Gupta, R., Kumar, S., Gomes, J., & Kuhad, R. C. (2012). Biotechnology for Biofuels, 5, 16–25.

    Article  CAS  Google Scholar 

  25. Corazza, F. C., Moraes, F. F., Zanin, G. M., & Neitzel, I. (2003). Acta Scientiarum Technology, 25, 33–38.

    Google Scholar 

  26. CALSAVARA, L. P. V., Moraes, F. F., & Zanin, G. M. (1999). Applied Biochemistry and Biotechnology, 77, 789–806.

    Article  Google Scholar 

  27. Ramos, L. P., & Saddler, J. N. (1994). Applied Biochemistry and Biotechnology, 45–46, 193–207.

    Article  Google Scholar 

  28. Hodge, D. B., Karim, M. N., Schell, D. J., & McMillan, J. D. (2009). Applied Biochemistry and Biotechnology, 152, 88–107.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CNPq, PRH24/ANP, CAPES, and Fundação Araucária (Brazilian Agencies) for financial support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Lúcio Corazza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabral, P.S., Filho, A.Z., Voll, F.A.P. et al. Kinetics of Enzymatic Hydrolysis of Olive Oil in Batch and Fed-batch Systems. Appl Biochem Biotechnol 173, 1336–1348 (2014). https://doi.org/10.1007/s12010-014-0943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0943-x

Keywords

Navigation