Skip to main content
Log in

Determination of labile species of As(V), Ba, Cd, Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A binding phase based on the clay mineral montmorillonite (MT) was used as a sorbent in this work, which employed diffusive gradients in thin-film (DGT) devices to determine the lability of trace elements in natural waters. Montmorillonite exhibits low cost, wide availability, ease of handling, high ion-exchange capacity, and reusability. As(V), Ba2+, Cd2+, Co2+, Cr(III), Cu2+, Mn2+, Ni2+, Pb2+, Sr2+, V(V), and Zn2+ were quantitatively sorbed by MT and eluted with 1.0 mol L−1 HNO3, which provided efficiency above 70% of recovery. Validation tests were performed with synthetic solutions. The recovery of known concentrations ranged from 83 to 110%. The performance of modified DGT was compared with conventional DGT devices in experiments lasting 6 and 48 h. The results obtained with both DGT devices showed no significant differences with 95% confidence. DGT samplers with MT were deployed in the determination of labile forms of the elements in water samples from Iguaçu River (Paraná, Brazil). The measured masses of elements in MT for various durations showed good fit to a theoretical line, indicating that the results agreed with the principle of the DGT technique. The concentrations of labile species in the sample proceeded as follows; Sr > Cd > Ba > Cu > Cr > Mn > Zn > Pb. The results suggest that DGT devices with MT are an effective alternative for speciation analysis of a wide range of elements (cations as well as anions) in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stumm W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters. 3 rd ed. New York: Wiley-Interscience; 1996.

  2. Templeton DM, Ariese F, Cornelis R. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl Chem. 2000;72:1453–70.

    Article  CAS  Google Scholar 

  3. Dos Anjos VE, Abate G, Grassi MT. Comparação da labilidade de metais empregando voltametria, difusão em filmes finos por gradiente de concentração (DGT) e modelo computacional. Quim Nova. 2010;33:1307–12.

    Article  Google Scholar 

  4. Pesavento M, Alberti G, Biesuz R. Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta. 2009;631:129–41.

    Article  CAS  Google Scholar 

  5. Han S, Naito W, Hanai Y, Masunaga S. Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model. Water Res. 2013;47:4880–92.

    Article  CAS  Google Scholar 

  6. Dos Anjos VE, Abate G, Grassi MT. Potentiality of the use of montmorillonite in diffusive gradients in thin films (DGT) devices for determination of labile species of Cu, Cr, Cd, Mn, Ni, Pb, and Zn in natural waters. Br J Anal Chem. 2011;04:187–93.

    Google Scholar 

  7. Davison W, Zhang H. In situ speciation measurements of trace components in natural waters using thin-film gels. Nature. 1994;367:546–8.

    Article  CAS  Google Scholar 

  8. Zhang H, Davison W. Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Anal Chem. 1995;67:3391–00.

    Article  CAS  Google Scholar 

  9. Zhang H, Davison W. Direct in situ measurements of labile inorganic and organically bound metal species in synthetic solutions and natural waters using diffusive gradients in thin films. Anal Chem. 2000;72:4447–57.

    Article  CAS  Google Scholar 

  10. Zhang H, Davison W. In situ speciation measurements. Using diffusive gradients in thin films (DGT) to determine inorganically and organically complexed metals. Pure Appl Chem. 2001;73:9–15.

    Article  CAS  Google Scholar 

  11. Alexa N, Zhang H, Lead JR. Development of a miniaturized diffusive gradients in thin films (DGT) devices. Anal Chim Acta. 2009;655:80–5.

    Article  CAS  Google Scholar 

  12. Pescim GF, Marrach G, Vannuci-Silva M, Souza LA, Menegário AA. Speciation of lead in seawater and river water by using Saccharomyces cerevisiae immobilized in agarose gel as a binding agent in the diffusive gradients in thin films technique. Anal Bioanal Chem. 2012;404:1581–8.

    Article  CAS  Google Scholar 

  13. van Leeuwen HP, Town RM, Buffle J, Cleven RFMJ, Davison W, Puy J, et al. Dynamic speciation analysis and bioavailability of metals in aquatic systems. Environ Sci Technol. 2005;39:8545–56.

    Article  Google Scholar 

  14. Puy J, Uribe R, Mongin S, Galceran J, Cecília J, Levy J, et al. Lability criteria in diffusive gradients in thin films. J Phys Chem A. 2012;116:6564–73.

    Article  CAS  Google Scholar 

  15. Levy JL, Zhang H, Davison W, Puy J, Galceran J. Assessment of trace metal binding kinetics in the resin phase of diffusive gradients in thin films. Anal Chim Acta. 2012;717:143–50.

    Article  CAS  Google Scholar 

  16. Uribe R, Mongin S, Puy J, Cecília J, Galveran J, Zhang H, et al. Contribution of partially labile complexes to the DGT metal flux. Environ Sci Technol. 2011;45:5317–22.

    Article  CAS  Google Scholar 

  17. Uribe R, Puy J, Cecília J, Galceran J. Kinetic mixture effects in diffusion gradients in thin films (DGT). Phys Chem Phys. 2013;15:11349–55.

    Article  CAS  Google Scholar 

  18. Mongin S, Uribe R, Puy J, Cecília J, Galceran J, Zhang H, et al. Key role of the resin layer thickness in the lability of complexes measured by DGT. Environ Sci Technol. 2011;45:4869–75.

    Article  CAS  Google Scholar 

  19. Jiménez-Piedrahita M, Altier A, Cecília J, Rey-Castro C. Influence of the settling of the resin beads on diffusion gradients in thin films measurements. Anal Chim Acta. 2015;885:148–55.

    Article  Google Scholar 

  20. Menegário AA, Tonello PS, Durrant SF. Use of Saccharomyces cerevisiae immobilized in agarose gel as a binding agent for diffusive gradients in thin films. Anal Chim Acta. 2010;683:107–12.

    Article  Google Scholar 

  21. De Oliveira W, de Carvalho MBF, de Almeida E, Menegário AA, Domingos RN, Brossi-Garcia AL, et al. Determination of labile barium in petroleum-produced formation water using paper-based DGT samplers. Talanta. 2012;100:425–31.

    Article  Google Scholar 

  22. Zhang H, Davison W, Gadi R, Kobayashi T. In situ measurement of dissolved phosphorus in natural waters using DGT. Anal Chim Acta. 1998;370:29–38.

    Article  CAS  Google Scholar 

  23. Chang L-Y, Davison W, Zhang H, Kelly M. Performance characteristics for the measurement of Cs and Sr by diffusive gradients in thin films (DGT). Anal Chim Acta. 1998;368:243–53.

    Article  CAS  Google Scholar 

  24. Sui D-P, Fan H-T, Li J, Li Y, Li Q, Sun T. Application of poly(ethyleneimine) solution as binding agent in DGT technique for measurement of heavy metals. Talanta. 2013;114:276–82.

    Article  CAS  Google Scholar 

  25. Pelcová P, Docekalová H, Kleckerová A. Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters. Anal Chim Acta. 2014;819:42–8.

    Article  Google Scholar 

  26. Fan H-T, Liu J-X, Sui D-P, Yao H, Yan F, Sun T. Use of polymer-bound Schiff base as a new liquid binding agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+. J Hazard Mater. 2013;260:762–9.

    Article  CAS  Google Scholar 

  27. Colaço CD, Yabuki LNM, Rolisola AM, Menegário AA, de Almeida E, Suárez CA, et al. Determination of Mercury in river water by diffusive gradients in thin films using P81 membrane as binding layer. Talanta. 2014;129:417–21.

    Article  Google Scholar 

  28. Chen H, Zhang Y-Y, Zhong K-L, Guo L-W, Gu J-L, Bo L, et al. Selective sampling and measurement of Cr(VI) in water with polyquaternaty ammonium salt as a binding agent in diffusive gradients in thin-films technique. J Hazard Mater. 2014;271:160–5.

    Article  CAS  Google Scholar 

  29. Mc Bride MB. Environmental chemistry of soils. 1st ed. New York: Oxford University Press; 1994.

  30. Bhattacharyya KG, Gupta SS. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci. 2008;140:114–31.

    Article  CAS  Google Scholar 

  31. Abate G, Masini JC. Influence of pH, ionic strength and humic acid on adsorption of Cd(II) and Pb(II) onto vermiculite. Colloids Surf A Physicochem Eng Asp. 2005;262:33–9.

    Article  CAS  Google Scholar 

  32. Frois SR, Grassi MT, Fernandes TC, Barreto RAS, Abate G. Preconcentration of Cr(III) and speciation analysis of chromium employing montmorillonite satured with potassium ions. Quim Nova. 2011;34:462–7.

    Article  CAS  Google Scholar 

  33. Dos Anjos VE, Rohwedder JR, Cadore S, Abate G, Grassi MT. Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl Clay Sci. 2014;99:289–96.

    Article  Google Scholar 

  34. Abollino O, Giacomino A, Malandrino M, Mentasti E. Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci. 2008;38:227–36.

    Article  CAS  Google Scholar 

  35. Chostak CL, Campos MS, Silva SB, Abate G, Grassi MT. Modified DGT devices using alternative materials for the speciation of trace elements in natural waters. Quim Nova. 2015;38:356–63.

    CAS  Google Scholar 

  36. U.S.EPA. Method 1669. Sampling ambient water for determination of trace metals at EPA Water Quality Criteria Level. Washington, DC: U.S.EPA; 1996.

  37. Dos Anjos VE, Machado EC, Grassi MT. Biogeochemical behavior of arsenic species at Paranaguá Estuarine Complex, southern Brazil. Aquat Geochem. 2012;18:407–20.

    Article  CAS  Google Scholar 

  38. DGT Research. 1997. http://www.dgtresearch.com. Accessed 02 Feb 2016.

  39. Verweij W. In: CHEAQS PRO 2008.1.0, a program for calculating chemical equilibria in aquatic systems. 1999. http://www.cheaqs.eu. Accessed 02 Feb 2016.

  40. Sodré FF, Schnitzler DC, Scheffer EWO, Grassi MT. Evaluating copper behavior in urban surface waters under anthropic influence. A case study from the Iguaçu River, Brazil. Aquat Geochem. 2012;18:389–05.

    Article  Google Scholar 

  41. Apha AW. Standard methods for the examination of water and wastewater. USA: American Public Health Association; 1995.

    Google Scholar 

  42. Thompson M, Ellison SLR, Wood R. Harmonized guidelines for single-laboratory validation of methods of analysis. Pure Appl Chem. 2002;74:835–55.

    Article  CAS  Google Scholar 

  43. Puy J, Galcerant J, Cruz-González S, David CA, Uribe R, Lin C, et al. Measurement of metals using DGT: impact of ionic strength and kinetics of dissociation of complexes in the resin domain. Anal Chem. 2014;86:7740–8.

    Article  CAS  Google Scholar 

  44. Warnken KW, Lawlor AJ, Lofts S, Tipping E, Davison W, Zhang H. In situ speciation measurements of trace metals in headwater streams. Environ Sci Technol. 2009;43:7230–6.

    Article  CAS  Google Scholar 

  45. Sodré FF, dos Anjos VE, Prestes EC, Grassi MT. Identification of copper sources in urban waters using the principal component analysis based on aquatic parameters. J Environ Monit. 2005;7:581–5.

    Article  Google Scholar 

  46. Meylan S, Behra R, Sigg L. Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environ Sci Technol. 2003;37:5204–12.

    Article  CAS  Google Scholar 

  47. Citak D, Tuzen M, Soylak M. Speciation of Mn(II), Mn(VII) and total manganese in water and food samples by coprecipitation-atomic absorption spectrometry combination. J Hazard Mater. 2010;173:773–7.

    Article  CAS  Google Scholar 

  48. Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ Pollut. 2000;107:263–83.

    Article  CAS  Google Scholar 

  49. Xue H, Sigg L. Cadmium speciation and complexation by natural organic ligands in fresh water. Anal Chim Acta. 1998;363:249–59.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (PROCAD 0082/05-8), Instituto Nacional de Ciências e Tecnologias Analíticas Avançadas (INCTAA, 573894/2008-6), CNPq, and Petrobras for financial support. VEA also thanks CAPES for the PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco T. Grassi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Anjos, V.E., Abate, G. & Grassi, M.T. Determination of labile species of As(V), Ba, Cd, Co, Cr(III), Cu, Mn, Ni, Pb, Sr, V(V), and Zn in natural waters using diffusive gradients in thin-film (DGT) devices modified with montmorillonite. Anal Bioanal Chem 409, 1963–1972 (2017). https://doi.org/10.1007/s00216-016-0144-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0144-2

Keywords

Navigation