Skip to main content
Log in

Kinetic analysis of the reactivity of peroxyl radicals in chain oxidation of unsaturated compounds

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The array of rate constants (323 K) for the addition of peroxyl radicals of different structures to the π-bonds of unsaturated compounds was obtained. These data were analyzed using a combination of correlation and quantum chemical methods. The prospects of using Denisov’s parabolic model are shown in comparison with classical linear correlations. It is noted that QSPR models using quantum chemical and structural descriptors can also be used to estimate the reactivity of reacting particles in this elementary act. The obtained kinetic information can be the basis for elucidating the detailed mechanism of oxidation of biologically significant molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Notes

  1. When chains are initiated by the reaction of molecular oxygen with a substrate molecule (O2 + RH), the chain initiation rate in autooxidation mode W0 is used instead of Wi [22, 25]

  2. \(\lg k = \lg k_{0} - \frac{1}{{2,3k_{B} T}} \cdot \frac{\varepsilon - 1}{{2\varepsilon + 1}}\left( {\frac{{\mu_{1}^{2} }}{{r_{1}^{3} }} + \frac{{\mu_{2}^{2} }}{{r_{2}^{3} }} - \frac{{\mu_{ \ne }^{2} }}{{r_{ \ne }^{3} }}} \right)\), where ε is the permittivity of the medium; μ1, μ2, μ, r1, r2, r are dipole moments and effective radii of reagents, products and transition states, respectively; kB is Boltzmann constant; T is absolute temperature [43].

References

  1. Roginsky VA (1996) Kinetics of the chain oxidation of methyl linoleate in aqueous micellar solutions of sodium dodecyl sulfate. Kinet Catal 37:488–494

    Google Scholar 

  2. Roginsky VA (2003) Chain-breaking antioxidant activity of natural polyphenols as determined during the chain oxidation of methyl linoleate in Triton X-100 micelles. Arch Biochem Biophys 414:261–270. https://doi.org/10.1016/s0003-9861(03)00143-7

    Article  PubMed  CAS  Google Scholar 

  3. Roginsky VA (2010) Oxidizability of cardiac cardiolipin in Triton X-100 micelles as determined by using a Clark electrode. Chem Phys Lipids 163:127–130. https://doi.org/10.1016/j.chemphyslip.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  4. Pliss E, Loshadkin D, Grobov A, Kuznetsova T, Rusakov A (2015) Kinetic study and simulation of methyl linoleate oxidation in micelles. Russ J Phys Chem B 9:68–72. https://doi.org/10.7868/S0207401X15010094

    Article  Google Scholar 

  5. Moskalenko I, Petrova S, Pliss E, Rusakov A, Buchachenko A (2016) Effect of microheterogeneity on the kinetics of oxidation of methyl linoleate in micelles. Russ J Phys Chem B 10:260–262. https://doi.org/10.1134/S1990793116020214

    Article  CAS  Google Scholar 

  6. Loshadkin D, Pliss E, Kasaikina O (2020) Features of methyl linoleate oxidation in Triton X-100 micellar buffer solutions. J Appl Chem 93:1083–1088. https://doi.org/10.31857/S0044461820070178

    Article  Google Scholar 

  7. Roginsky V, Barsukova T (2001) Superoxide dismutase inhibits lipid peroxidation in micelles. Chem Phys Lipids 111:87–91. https://doi.org/10.1016/s0009-3084(01)00148-7

    Article  PubMed  CAS  Google Scholar 

  8. Roginsky V, Barsukova T, Loshadkin D, Pliss E (2003) Substituted p-hydroquinones as inhibitors of lipid peroxidation. Chem Phys Lipids 125:49–58. https://doi.org/10.1016/S0009-3084(03)00068-9

    Article  PubMed  CAS  Google Scholar 

  9. Kasaikina O, Mengele E, Plashchina I (2016) Oxidation of nonionic surfactants with molecular oxygen. Colloid J 78:730–734. https://doi.org/10.1134/S1061933X16060065

    Article  CAS  Google Scholar 

  10. Tikhonov I, Pliss E, Borodin L, Sen V (2016) Effect of superoxide dismutase on the oxidation of methyl linoleate in micelles inhibited by nitroxyl radicals. Russ Chem Bull 65:2985–2987. https://doi.org/10.1007/s11172-016-1690-7

    Article  CAS  Google Scholar 

  11. Moskalenko I, Tikhonov I, Pliss E, Fomich M, Shmanai V, Rusakov A (2018) Kinetic isotope effect in the oxidation reaction of linoleic acid esters in micelles. Russ J Phys Chem B 12:987–991. https://doi.org/10.1134/S1990793118050196

    Article  CAS  Google Scholar 

  12. Amorati R, Valgimigli L (2015) Advantages and limitations of common testing methods for antioxidants. Free Radical Res 49:633–649. https://doi.org/10.3109/10715762.2014.996146

    Article  CAS  Google Scholar 

  13. Poon J, Zilka O, Pratt D (2020) Potent ferroptosis inhibitors can catalyze the cross-dismutation of phospholipid-deriv peroxyl radicals and hydroperoxyl radicals. J Am Chem Soc 14:14331–14342. https://doi.org/10.1021/jacs.0c06379

    Article  CAS  Google Scholar 

  14. Soloviev M, Moskalenko I, Pliss E (2019) Quantum chemical evaluation of the role of HO2 radicals in the kinetics of the methyl linoleate oxidation in micelles. React Kinet Mech Cat 127:561–581. https://doi.org/10.1007/s11144-019-01613-w

    Article  CAS  Google Scholar 

  15. Pliss E, Soloviev M, Loshadkin D, Molodochkina S, Kasaikina O (2021) Kinetic model of polyunsaturated fatty acids oxidation in micelles. Chem Phys Lipids 237:105089. https://doi.org/10.1016/j.chemphyslip.2021.105089

    Article  PubMed  CAS  Google Scholar 

  16. Lente G (2013) Comment on turning over’ definitions in catalytic cycles. ACS Catal 3:381–382. https://doi.org/10.1021/cs300846b

    Article  CAS  Google Scholar 

  17. Lente G (2015) Deterministic kinetics in chemistry and systems biology. The dynamics of complex reaction networks. Springer Briefs in Molecular Science, Berlin, p 148. https://doi.org/10.1007/978-3-319-15482-4

    Book  Google Scholar 

  18. Lente G (2017) Analytical solutions for the rate equations of irreversible two-step consecutive processes with mixed second order later steps. J Mat Chem 55:832–848. https://doi.org/10.1007/s10910-016-0712-x

    Article  CAS  Google Scholar 

  19. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83. https://doi.org/10.1016/j.coche.2018.03.007

    Article  Google Scholar 

  20. Schmitz G, Lente G (2020) Fundamental concepts in chemical kinetics. ChemTexts 6:1. https://doi.org/10.1007/s40828-019-0096-1

    Article  CAS  Google Scholar 

  21. Szabo R, Lente G (2022) Matematikai reakciókinetika: a paritássértési energiától a nanorészecske-növekedésig. Magy Kem Foly 128:60–67. https://doi.org/10.24100/MKF.2022.02.60

    Article  Google Scholar 

  22. Denisov E, Afanasev I (2005) Oxidation and antioxidants in organic chemistry and biology. CRC Press, Boca Raton. https://doi.org/10.1201/9781420030853

    Book  Google Scholar 

  23. Yin H, Xu L, Porter N (2011) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 111:5944–5972. https://doi.org/10.1021/cr200084z

    Article  PubMed  CAS  Google Scholar 

  24. Niki E (2012) Lipid peroxidation. Encyclopedia of radicals in chemistry, biology and materials. John Wiley, Chichester, pp 1577–1598. https://doi.org/10.1002/9781119953678.rad052

    Chapter  Google Scholar 

  25. Pliss E, Zlotskiy S, Safiulin R (2012) Inhibited oxidation of unsaturated compounds. Kinetics, mechanism, structure-reactivity relationship. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruchen, p 130

    Google Scholar 

  26. Pérez-Martín I, Suárez E (2012) Encyclopedia of radicals in chemistry, biology and materials. John Wiley, New York, p 2293. https://doi.org/10.1002/9781119953678.rad031

    Book  Google Scholar 

  27. Moad G, Solomon D (2005) The chemistry of radical polymerization. Elsevier, Amsterdam, p 639. https://doi.org/10.1016/b978-0-08-044288-4.x5015-8

    Book  Google Scholar 

  28. Matyjaszewski K, Davis T (2002) Handbook of radical polymerization. John Wiley, Hoboken, p 920. https://doi.org/10.1021/JA0253078

    Book  Google Scholar 

  29. Mogilevitsh MM, Pliss EM (1990) Oxidation and oxidative polymerization of unsaturated compounds. M.: Khimiya. p. 240

  30. Tikhonov IV, Sen’ VD, Borodin LI, Pliss EM, Golubev VA, Rusakov AI (2014) Effect of the structure of nitroxyl radicals on the kinetics of their acid-catalyzed disproportionation. J Phys Org Chem 27:114–120. https://doi.org/10.1002/poc.3247

    Article  CAS  Google Scholar 

  31. Sirick AV, Pliss RE, Rusakov AI, Pliss EM (2014) Effects of non-specific solvation during the oxidation of 1,2-diphenylethene and 1,4-diphenylbutadiene. Oxid Comm 37:32–36

    CAS  Google Scholar 

  32. Sirick AV, Pliss RE, Rusakov AI, Pliss EM (2014) Effect of medium’s polarity on the reactivity of hydroperoxide radical in oxidation reactions of 1,2-diphenylethene and 1,4-diphenylbutadiene. Oxid Comm 37:37–40

    CAS  Google Scholar 

  33. Lednev S, Sirick A, Pliss E, Rusakov A, Shvyrkova N, Ivanov A (2015) Influence of solvation on the kinetics of methyl methacrylate oxidation inhibited by aromatic amines. React Kinet Mech Cat 116:43–50. https://doi.org/10.1007/s11144-015-0881-9

    Article  CAS  Google Scholar 

  34. Sen’ VD, Tikhonov IV, Borodin LI, Pliss EM, Golubev VA, Syroeshkin MA, Rusakov AI (2015) Kinetics and thermodynamics of reversible disproportionation-comproportionation in redox triad oxoammonium cations – nitroxyl radicals – hydroxylamines. J Phys Org Chem 28:17–24. https://doi.org/10.1002/poc.3392

    Article  CAS  Google Scholar 

  35. Sirick A, Lednev S, Moskalenko I, Machtin V, Pliss E (2016) Kinetic features of chain initiation reactions during the oxidation of unsaturated compounds in media of different polarity. React Kinet Mech Cat 117:405–415. https://doi.org/10.1007/s11144-015-0957-6

    Article  CAS  Google Scholar 

  36. Pliss EM, Machtin VA, Grobov AM, Pliss RE, Sirick AV (2017) Kinetics and mechanism of radical-chain oxidation of 1,2-substituted ethylene and 1,4-substituted butadiene-1,3. Int J Chem Kinet 49:173–181. https://doi.org/10.1002/kin.21065

    Article  CAS  Google Scholar 

  37. Pliss E, Machtin V, Soloviev M, Grobov A, Pliss R, Sirik A, Rusakov A (2018) The role of solvation in the kinetics and the mechanism of hydroperoxide radicals addition to π-bonds of 1,2-diphenylethylene and 1,4-diphenylbutadiene-1,3. Int J Chem Kinet 50:397–409. https://doi.org/10.1002/kin.21169

    Article  CAS  Google Scholar 

  38. Pliss E, Machtin V, Pliss R, Sirik A, Loshadkin D, Rusakov A (2018) The effect of solvation on the reactivity of 1,1-substituted ethylenes in hydroperoxyl radical addition reactions. React Kinet Mech Cat 123:559–571. https://doi.org/10.1007/s11144-017-1336-2

    Article  CAS  Google Scholar 

  39. Pliss EM, Soloviev ME, Sen’ VD, Pliss RE, Sirik AV, Tikhonov IV (2021) The influence of medium’s polarity on the kinetics and mechanism of interaction of aliphatic nitroxides with hydroperoxyl radicals. React Kinet Mech Cat 132:617–635. https://doi.org/10.1007/s11144-021-01948-3

    Article  CAS  Google Scholar 

  40. Pliss EM, Rusakov AI, Mendkovich AV, Sirick AV (2012) Solvation effects in liquid-phase reactions of neutral and negatively charged paramagnetic particles. - M.: Mir. p. 251

  41. Pliss EM, Tikhonov IV, Rusakov AI (2012) Kinetics and mechanism of reactions of aliphatic stable nitroxides in chemical and biological chain processes. Nitroxides - Theory Experiment and Applications. InTech, London, pp 263–284

    Google Scholar 

  42. Pliss EM, Sen’ VD, Tikhonov IV (2013) Nitroxide radicals in chemical and biochemical processes. LAP LAMBERT Academic Publishing GmbH & Co. KG, Saarbruchen, p 96

    Google Scholar 

  43. Emanuel N, Zaikov G, Maizus Z (2013) Oxidation of organic compounds: medium effects in radical reactions. Elsevier Science, Burlington, p 698

    Google Scholar 

  44. Buchachenko AL, Pliss EM (2016) Isotope effects of hydrogen and atom tunnelling. Rus Chem Rev 85:557–564. https://doi.org/10.1070/rcr4625

    Article  CAS  Google Scholar 

  45. Andrianova ZS, Breslavskaya NN, Pliss EM, Buchachenko AL (2016) Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids. Rus J Phys Chem A 90:1936–1941. https://doi.org/10.1134/S0036024416100022

    Article  CAS  Google Scholar 

  46. Buchachenko AL, Lawler RG (2017) New possibilities for magnetic control of chemical and biochemical reactions. Acc Chem Res 50:877–884. https://doi.org/10.1021/acs.accounts.6b00608

    Article  PubMed  CAS  Google Scholar 

  47. Abraham M, Grellier P, Prior D, Taft R, Morris J, Laurence C, Berthelot M, Doherty R, Kamlet M, Abboud J, Luis M, Sraidi K, Guiheneuf G (1988) A general treatment of hydrogen bond complexation constants in tetrachloromethane. J Am Chem Soc 110:8534–8536. https://doi.org/10.1021/ja00233a034

    Article  CAS  Google Scholar 

  48. Abraham H, Joelle M, Gola J, Cometto-Muñiz E, Acree W (2010) Hydrogen bonding between solutes in solvents octan-1-ol and water. J Org Chem 75:7651–7658. https://doi.org/10.1021/jo1014646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Liu Z (2010) Chemical methods to evaluate antioxidant ability. Chem Rev 110:5675–5691. https://doi.org/10.1021/cr900302x

    Article  PubMed  CAS  Google Scholar 

  50. Denisov E (1997) New empirical models of radical abstraction reactions. Rus Chem Rev 66:859–876. https://doi.org/10.1070/RC1997v066n10ABEH000364

    Article  Google Scholar 

  51. Denisov E (2008) Model of the radical addition reaction as the superposition of three potential curves. Kinet Catal 49:313–324. https://doi.org/10.1134/S0023158408030014

    Article  CAS  Google Scholar 

  52. Aleksandrov A, Pliss E, Shuvalov V (1979) Rate constants of the reaction between alkyl radicals and oxygen and stable nitroxyl radicals. Russ Chem Bull 28:2262–2267. https://doi.org/10.1007/BF00951696

    Article  Google Scholar 

  53. Beuermann S, Buback M (2002) Rate coefficients of free-radical polymerization deduced from pulsed laser experiments. Prog Polym Sci 27:191–254. https://doi.org/10.1016/S0079-6700(01)00049-1

    Article  CAS  Google Scholar 

  54. Barth J, Buback M (2010) SP-PLP-EPR – A novel method for detailed studies into the termination kinetics of radical polymerization. Macromol React Eng 4:288–301. https://doi.org/10.1002/mren.200900066

    Article  CAS  Google Scholar 

  55. Verros D, Achrilas D (2009) Modeling gel effect in branched polymer systems: free-radical solution homopolymerization of vinyl acetate. J Appl Polym Sci 111:2171–2185. https://doi.org/10.1002/app.29252

    Article  CAS  Google Scholar 

  56. Mavroudakis E, Cuccato D, Moscatelli D (2015) On the use of quantum chemistry for the determination of propagation, copolymerization, and secondary reaction kinetics in free radical polymerization. Polymers 7:1789–1819. https://doi.org/10.3390/polym7091483

    Article  CAS  Google Scholar 

  57. Pliss E, Grobov A, Kuzaev A, Buchachenko A (2019) Magnetic field effect on the oxidation of organic substances by molecular oxygen. J Phys Org Chem 32:1–6. https://doi.org/10.1002/poc.3915

    Article  CAS  Google Scholar 

  58. Nikolayev A, Safiullin R, Komissarov V (1986) Reation kinetics alkil and alkilperoxide radicals. React Kin Catal Lett 31:355–359. https://doi.org/10.1007/BF02072970

    Article  Google Scholar 

  59. Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8 / Data Version 202022.

  60. Howard J, Ingold K (1967) Absolute rate constants for hydrocarbon autoxidation. VI. Alkyl aromatic and olefinic hydrocarbons. Canad J Chem 45:793–802. https://doi.org/10.1139/v67-132

    Article  CAS  Google Scholar 

  61. Scaiano JC (1988) Kinetic studies of alkoxyl radicals. In: Simic MG, Taylor KA, Ward JF, von Sonntag C (eds) Oxygen radicals in biology and medicine. Basic life sciences, vol 49. Springer, Boston. https://doi.org/10.1007/978-1-4684-5568-7_9

    Chapter  Google Scholar 

  62. Howard J (1972) Absolute rate constants for hydrocarbon autoxidation. XXII. The autoxidation of some vinyl compounds. Canad J Chem 50:2298–2304. https://doi.org/10.1139/v72-366

    Article  CAS  Google Scholar 

  63. Kucher R, Opeida I (2007) Kinetics of the oxidation of mixtures of organic substances in the liquid phase. Ras Chem Rev 54:454–465. https://doi.org/10.1070/RC1985v054n05ABEH003073

    Article  Google Scholar 

  64. Warren J, Tronic T, Mayer J (2010) Thermochemistry of proton-coupled electron transfer reagents and its implications. Chem Rev 110:6961–7001. https://doi.org/10.1021/cr100085k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Litwinenko G, Ingold K (2007) Solvent effects on the rates and mechanisms of reaction of phenols with free radicals. Acc Chem Res 40:222–230. https://doi.org/10.1021/ar0682029

    Article  CAS  Google Scholar 

  66. Pliss EM, Sokolov AV, Loshadkin DV, Popov SV. Kinetics 2012 – a program for calculating the kinetic parameters of chemical and biological processes, version 2.0. Official Bulletin of the Federal Service for Intellectual Property Computer Programs. Database. Topologies of integrated circuits, No. 10. 2021 Certificate of state registration of computer programs No. 2021665836.

  67. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  68. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation efects. Phys Rev 1:1. https://doi.org/10.1103/physrev.140.a1133

    Article  Google Scholar 

  69. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  70. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206. https://doi.org/10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  71. Valiev M, Bylaska EJ, Govind N et al (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

  72. Alex A. Granovsky, Firefly version 8, www http://classic.chem.msu.su/gran/firefly/index.html

  73. Bachrach SM (2007) Computational organic chemistry. John Wiley, New York, p 478

    Book  Google Scholar 

  74. Kaya S, von Szentpaly L, Serdaroglu G, Guo L (eds) (2023) Chemical reactivity. Approaches and applications, vol 2. Elsevier, Amsterdam, p 500

    Google Scholar 

  75. Geerlings P, De Proft F (2002) Chemical reactivity as described by quantum chemical methods. Int J Mol Sci 3:276–309. https://doi.org/10.3390/i3040276

    Article  CAS  Google Scholar 

  76. Otsuka T, Okimoto N, Saito H, Taiji M (2019) Quantum chemical analysis of reaction indices and reaction path for drug molecules. J Phys. https://doi.org/10.1088/1742-6596/1290/1/012021

    Article  Google Scholar 

  77. Vidhya V, Austine A, Arivazhagan M (2019) Quantum chemical determination of molecular geometries and spectral investigation of 4-ethoxy-2, 3-difluoro benzamide. Heliyon 5(11):e02365. https://doi.org/10.1016/j.heliyon.2019.e02365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Wang L, Ding J, Pan L, Cao D, Jiang H, Ding X (2021) Quantum chemical descriptors in quantitative structure–activity relationship models and their applications. Chemom Intell Lab Syst 217:104384. https://doi.org/10.1016/j.chemolab.2021.104384

    Article  CAS  Google Scholar 

  79. Bing Y, Zhengde T, Xinliang Y (2011) QSPR analysis of the patterns scheme parameters for the prediction of monomer reactivity ratios. Chin J Chem 29:41–47. https://doi.org/10.1002/cjoc.201190058

    Article  Google Scholar 

  80. Zárate Hernández LA, Camacho-Mendoza RL, González-Montiel S, Cruz-Borbolla J (2021) The chemical reactivity and QSPR of organic compounds applied to dye-sensitized solar cells using DFT. J Mol Graph Model 104:107852. https://doi.org/10.1016/j.jmgm.2021.107852

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

T. Pokidova is grateful to the Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences for financial support in calculating the parameters of the parabolic model (State assignment No. AAAA-A19-119071190045-0). M. Berezin is grateful to the Federal Research Center of Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences for financial support in measuring initiation rates in oxidizing unsaturated compounds by ESR method (State Assignment No. AAAA-A19-119041090087-4). E. Pliss, A. Sirik, A. Grobov, N. Pitsin, V. Machtin are grateful to the Russian Science Foundation for financial support in carrying out experiments to determine the rate constants of the oxidation of unsaturated compounds and calculations for kinetic and quantum chemical analysis of the detailed mechanism of the process (Grant No. 20-13-00148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Pliss.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliss, E., Pokidova, T., Sirik, A. et al. Kinetic analysis of the reactivity of peroxyl radicals in chain oxidation of unsaturated compounds. Reac Kinet Mech Cat 137, 53–76 (2024). https://doi.org/10.1007/s11144-023-02524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02524-7

Keywords

Navigation