Skip to main content
Log in

Comparative influence of adsorption assisted magnetic mesoporous TiO2 photocatalyst for the removal of methylene blue and rhodamine B

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, magnetically separable Fe3O4-SiO2-mesoTiO2 nanocomposite has been synthesized for photodegradation of Methylene Blue (MB) and Rhodamine B (RhB) cationic dyes which have complex aromatic structures and are difficult to degrade into harmless products. By XRD analysis, it was determined that the magnetite phase of Fe3O4 was protected after coating with SiO2 interlayer and mesoTiO2 shell, and the anatase phase of TiO2 was formed. According to the N2-adsorption/desorption and VSM results, Fe3O4-SiO2-mesoTiO2 nanocomposite has a surface area of 197.8 m2/g, pore volume of 0.34 cm3/g and a pore size of 3.4 nm and has 3.8 emu/g saturation magnetization and negligible remnant magnetization and coercivity, which indicates its mesoporous and superparamagnetic character. The adsorption ability of RhB (16.86%) is lower than MB (23.32%), nevertheless, the photodegradation activity of RhB (99.06%) is higher than that of MB (97.52%). Photodegradation kinetics follows the pseudo-first order and the rate constants of photocatalytic reactions were calculated as 0.0422 and 0.0719 min−1 for MB and RhB, respectively. While the lower adsorption feature of RhB was resulted from steric hindrance, the higher photodegradation rate was explained by more radical scavenging effect. MB prefers to face the photocatalyst surface, whereas RhB prefers to focus on the aqueous phase, and based on scavenge results, RhB is more likely to encounter photoactive species (H2O2, h+ and ·O2) than that of MB with ·O2 being the dominant active species. The synthesized Fe3O4-SiO2-mesoTiO2 photocatalyst could be reused three times with negligible photocatalytic loss in the photodegradation of both dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ahmed SN, Haider W (2018) Nanotechnology 29:342001

    Article  PubMed  Google Scholar 

  2. Hitam CNC, Jalil AA (2020) J Environ Manage 258:110050

    Article  CAS  PubMed  Google Scholar 

  3. Su G, Liu L, Zhang L, Liu X, Xue J, Tang A (2021) Environ Sci Pollut Res 28:50286–50301

    Article  CAS  Google Scholar 

  4. Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529

    Article  CAS  PubMed  Google Scholar 

  5. Ma J, Sun N, Wang C, Xue J, Qiang L (2018) J Alloys Compd 743:456–463

    Article  CAS  Google Scholar 

  6. Nguyen CH, Juang RS (2019) J Taiwan Inst Chem Eng 99:166–179

    Article  CAS  Google Scholar 

  7. Wang C, Li Q, Wang RD (2004) Mater Lett 58:1424–1426

    Article  CAS  Google Scholar 

  8. Yuan Q, Li N, Geng W, Chi Y, Li X (2012) Mater Res Bull 47:2396–2402

    Article  CAS  Google Scholar 

  9. Shibata H, Ogura T, Mukai T, Ohkubo T, Sakai H, Abe M (2005) J Am Chem Soc 127:16396–16397

    Article  CAS  PubMed  Google Scholar 

  10. Teng Z, Su X, Chen G, Tian C, Li H, Ai L, Lu G (2012) Colloids Surf A Physicochem Eng Asp 402:60–65

    Article  CAS  Google Scholar 

  11. Huber DL (2005) Small 1:482–501

    Article  CAS  PubMed  Google Scholar 

  12. Akbarzadeh A, Samiei M, Davaran S (2012) Nanoscale Res Lett 7:144

    Article  PubMed  PubMed Central  Google Scholar 

  13. Massart R (1981) IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  14. Lewandowski D, Cegłowski M, Smoluch M, Reszke E, Silberring J, Schroeder G (2017) Microporous Mesoporous Mater 240:80–90

    Article  CAS  Google Scholar 

  15. Jabbar ZH, Ebrahim SE (2021) Environ Nanotechnol Monit Manag 16:100554

    CAS  Google Scholar 

  16. Hosseini N, Toosi MR (2019) Sep Sci Technol 54:1697–1709

    Article  CAS  Google Scholar 

  17. Conceição DS, Graça CAL, Ferreira DP, Ferraria AM, Fonseca IM, Botelho do Rego AM, Teixeira ACSC, Vieira Ferreira LF (2017) Microporous Mesoporous Mater 253:203–214

    Article  Google Scholar 

  18. Tu J, Ding M, Wang T, Ma L, Xu Y, Kang S, Zhang G (2017) Energy Procedia 105:82–87

    Article  CAS  Google Scholar 

  19. Renuka NK, Praveen AK, Aravindakshan KK (2013) Mater Lett 91:118–120

    Article  CAS  Google Scholar 

  20. Nicola R, Costişor O, Muntean SG, Nistor MA, Putz AM, Ianăşi C, Lazău R, Almásy L, Săcărescu L (2020) J Porous Mater 27:413–428

    Article  CAS  Google Scholar 

  21. Rabbani M, Seghatoleslami ZS, Rahimi R (2017) J Mol Struct 1146:113–118

    Article  CAS  Google Scholar 

  22. Yu JX, Li BH, Sun XM, Jun Y, Chi RA (2009) Biochem Eng J 45:145–151

    Article  CAS  Google Scholar 

  23. Luque PA, Garrafa-Gálvez HE, Nava O, Olivas A, Martinez-Rosas ME, Vilchis-Nestor AR, Villegas-Fuentes A, Chinchillas-Chinchillas MJ (2021) Ceram Int 47:23861–23874

    Article  CAS  Google Scholar 

  24. Konstantinou IK, Albanis TA (2004) Appl Catal B Environ 49:1–14

    Article  CAS  Google Scholar 

  25. Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, New York

    Book  Google Scholar 

  26. Lente G (2018) Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  27. Abdel-Aziz R, Ahmed MA, Abdel-Messih MF (2020) J Photochem Photobiol A Chem 389:112245

    Article  CAS  Google Scholar 

  28. Jabbar ZH, Ebrahim SE (2021) Opt Mater 122:111818

    Article  CAS  Google Scholar 

  29. Ge B, Han L, Gao B, Zhang T, Li X, Zhu X, Pu X, Li W (2019) Sep Sci Technol 54:962–969

    Article  CAS  Google Scholar 

  30. Zhao G, Zou J, Li C, Yu J, Jiang X, Zheng Y, Hu W, Jiao F (2018) J Mater Sci Mater Electron 29:7002–7014

    Article  CAS  Google Scholar 

  31. Trandafilović LV, Jovanović DJ, Zhang X, Ptasińska S, Dramićanin MD (2017) Appl Catal B Environ 203:740–752

    Article  Google Scholar 

  32. Humayun M, Raziq F, Khan A, Luo W (2018) Green Chem Lett Rev 11:86–102

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by The Commission of Scientific Research Projects of Bursa Uludag University, Project number: FGA-2021-543.

Author information

Authors and Affiliations

Authors

Contributions

Experimental studies including the synthesis and photocatalysis parts were performed by authors BE and SS. Authors BE, SE and RMÖ have contributed in catalyst characterization. The first draft of the manuscript was written through contributions of all authors and they have given approval to the final manuscript.

Corresponding author

Correspondence to Beyhan Erdem.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdem, B., Sevinç, S., Erdem, S. et al. Comparative influence of adsorption assisted magnetic mesoporous TiO2 photocatalyst for the removal of methylene blue and rhodamine B. Reac Kinet Mech Cat 136, 1049–1065 (2023). https://doi.org/10.1007/s11144-023-02397-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-023-02397-w

Keywords

Navigation