Skip to main content
Log in

Mesoporous magnetic nanocomposites: a promising adsorbent for the removal of dyes from aqueous solutions

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Water pollution by synthetic organic dyes is mainly regarded as environmental and ecological issues worldwide and requires feasible solutions in face of the short-term risk to human health and stability of eco-systems. Therefore, in this paper, the magnetic mesoporous composites (MMC) were synthesized by surfactant template sol–gel method, using cetyl-trimethylammonium bromide (CTAB) as mesoporous structure generator and investigated for anionic and cationic dyes removal from aqueous solutions. The magnetic iron oxide nanoparticles were obtained by reverse co-precipitation, followed by mesoporous silica coating through modified sol–gel method. The obtained materials were characterized by FT-IR spectroscopy, X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, nitrogen adsorption, small-angle X-ray scattering and magnetization measurements. The influence of CTAB amount on the morpho-textural and structural properties of nanocomposites was studied. XRD and Mössbauer spectroscopy showed that the obtained nanocomposites were composed of pure maghemite nanoparticles, and TEM images revealed particles size around 10 nm, embedded in silica matrix. The combination of magnetic properties and high surface area values, up to 695 m2/g, made suitable the obtained nanocomposites to be used as adsorbents. The dye removal efficiency was higher than 90% after the first adsorption and remained above 65% after four adsorption–desorption cycles, indicating that the as-prepared magnetic mesoporous nanocomposites can be considered excellent adsorbent materials for the removal of both anionic and cationic dyes from wastewaters, and the recycling performance revealed the stability of MMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. Roduner, Chem. Soc. Rev. 35, 583 (2006). https://doi.org/10.1039/B502142C

    Article  PubMed  CAS  Google Scholar 

  2. R.E. Morsi, R.S. Mohamed, R. Soc, Open Sci. 5, 172021 (2018). https://doi.org/10.1098/rsos.172021

    Article  CAS  Google Scholar 

  3. P.S. Muller, C.P. Parker, S.C. Larsen, Micropor. Mesopor. Mater. 204, 173 (2015). https://doi.org/10.1016/j.micromeso.2014.11.009

    Article  CAS  Google Scholar 

  4. S. Wei, Q. Wang. J. Zhu, L. Sun, H. Lin, Z. Guo, Nanoscale 3, 474 (2011). 10.1039/C1NR11000D

    Article  Google Scholar 

  5. J. Liu, S.Z. Qiao, Q.H. Hu, G.Q. Lu, Small 7, 425 (2011). https://doi.org/10.1002/smll.201001402

    Article  PubMed  CAS  Google Scholar 

  6. D. Niu, Z. Ma, Y. Li, J. Shi, J. Am. Chem. Soc. 132, 15144 (2010). https://doi.org/10.1021/ja1070653

    Article  PubMed  CAS  Google Scholar 

  7. S. Huang, C. Li, Z. Cheng, Y. Fan, P. Yang, C. Zhang, K. Yang, J. Lin, J. Colloid Interf. Sci. 376, 312 (2012). https://doi.org/10.1016/j.jcis.2012.02.031

    Article  CAS  Google Scholar 

  8. T. Suteewong, H. Sai, J. Lee, M. Bradbury, T. Hyeon, S.M. Gruner, U. Weisner, J. Mater. Chem. 20, 7807 (2010). https://doi.org/10.1039/C0JM01002B

    Article  CAS  Google Scholar 

  9. D.T. Nguyen, K.-S. Kim, Korean J. Chem. Eng. 31, 1289 (2014). https://doi.org/10.1007/s11814-014-0156-6

    Article  CAS  Google Scholar 

  10. Y.-S. Kim, K.-C. Kim, T.-W. Hong, Met. Mater. Int. 16, 225 (2010). https://doi.org/10.1007/s12540-010-0410-3

    Article  CAS  Google Scholar 

  11. J.W.M. Bulte, Methods Mol. Med. 124, 419 (2006). https://doi.org/10.1385/1-59745-010-3:419

    Article  PubMed  Google Scholar 

  12. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Chem. Rev. 108, 2064 (2008). 10.1021/cr068445e

    Article  PubMed  CAS  Google Scholar 

  13. H. Fatima, K.S. Kim, Korean J. Chem. Eng. 34, 589 (2017). https://doi.org/10.1007/s11814-016-0349-2

    Article  CAS  Google Scholar 

  14. H. Parham, B. Zargar, M. Rezazadeh, Mater. Sci. Eng. C 32, 2109 (2012). https://doi.org/10.1016/j.msec.2012.05.044

    Article  CAS  Google Scholar 

  15. S.Z. Mohammadi, T. Shamspur, M.A. Karimi, E. Naroui, Sci. World J. (2012). https://doi.org/10.1100/2012/640437

    Article  Google Scholar 

  16. Bhaumik, S. Samanta, N.K. Mal, Pramana J. Phys. 65, 855 (2005) https://www.ias.ac.in/article/fulltext/pram/065/05/0855-0862

  17. D. Jiles, Introduction to magnetism and magnetic materials (CRC Press Taylor/Francis, Boca Raton, 2015), p. 323

    Book  Google Scholar 

  18. S.A. Theofanidis, V.V. Galvita, C. Konstantopoulos, H. Poelman, G.B. Marin, Materials 11, 831 (2018). https://doi.org/10.3390/ma11050831

    Article  PubMed Central  CAS  Google Scholar 

  19. A. Cid, Synthesis of NPs by microemulsion method. In J. C. Mejuto (ed.), Microemulsion—A Chemical Nanoreactor (IntechOpen Science, London, 2018). 10.5772/intechopen.80633

  20. S. Sundar, G. Venkatachalam, S.J. Kwon, Catalysts 8, 512 (2018). https://doi.org/10.3390/catal8110512

    Article  CAS  Google Scholar 

  21. A.U. Badnore, M.A. Salvi, N.L. Jadhav, A.B. Pandit, D.V. Pinjari, Adv. Sci. Lett. 24, 5681 (2018). https://doi.org/10.1166/asl.2018.12176

    Article  Google Scholar 

  22. L. Almasy, D. Creanga, C. Nadejde, L. Rosta, E. Pomjakushina, M. Ursache-Oprisan, J. Serb. Chem. Soc. 80, 367 (2015). https://doi.org/10.2298/JSC140313053A

    Article  CAS  Google Scholar 

  23. A.F. Al-Alawy, E.E. Al-Abodi, R.M. Kadhim, J. Eng., 24, 60 (2018). 10.31026/j.eng.2018.10.05

    Article  Google Scholar 

  24. A.M. Predescu, E. Matei, A.C. Berbecaru, C. Pantilimon, C. Drăgan, R. Vidu, C. Predescu, V. Kuncser, Royal Soc. Open Sci. 5, 171525 (2018). https://doi.org/10.1098/rsos.171525

    Article  CAS  Google Scholar 

  25. P. Qin, Y. Yang, X. Zhang, J. Niu, H. Yang, S. Tian, J. Zhu, M. Lu, Nanomaterials 8, 4 (2018). https://doi.org/10.3390/nano8010004

    Article  CAS  Google Scholar 

  26. X. Lv, L. Zhang, F. Xing, H. Lin, Micropor. Mesopor. Mater. 225, 238 (2016). https://doi.org/10.1016/j.micromeso.2015.12.024

    Article  CAS  Google Scholar 

  27. A.M. El-Toni, A. Khan, M.A. Ibrahim, M. Al-Hoshan, J.P. Labis, Molecules 17, 13199 (2012). https://doi.org/10.3390/molecules171113199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. S. Kalantari, M. Yoursepour, Z. Taherian, Rare Met. 36, 942 (2017). https://doi.org/10.1007/s12598-016-0709-4

    Article  CAS  Google Scholar 

  29. Y. Li, Y. Zhou, W. Nie, L. Song, P. Chen, J. Porous Mater. 22, 1383 (2015). https://doi.org/10.1007/s10934-015-0017-7

    Article  CAS  Google Scholar 

  30. E. Li, Y. Yang, G. Hao, X. Yi, S. Zhang, Y. Pan, B. Xing, M. Gao, Nanotheranostics 2, 233 (2018). https://doi.org/10.7150/ntno.25565

    Article  PubMed  PubMed Central  Google Scholar 

  31. C. Ianăşi, M. Picioruş, R. Nicola, M. Ciopec, A. Negrea, D. Nižňanský, A. Len, L. Almásy, A.M. Putz, Korean J. Chem. Eng. 36, 688 (2019). https://doi.org/10.1007/s11814-019-0262-6

    Article  CAS  Google Scholar 

  32. S.-C. Hu, F. Shi, J.-X. Liu, L. Yu, S.-H. Liu, J. Porous Mater. 23, 655 (2016). https://doi.org/10.1007/s10934-015-0120-9

    Article  CAS  Google Scholar 

  33. F. Ye, S. Laurent, A. Fornara, L. Astolfi, J. Qin, A. Roch, A. Martini, M.S. Toprak, R.N. Muller, M. Muhammed, Contrast Media Mol. Imaging 7, 460 (2012). https://doi.org/10.1002/cmmi.1473

    Article  PubMed  CAS  Google Scholar 

  34. H. Gomaa, M. A. Shenashen, H. Yamaguchi, A. S. Alamoudi, M. Abdelmottaleb, M. F. Cheira, T. A. Seaf El-Naser, S. A. El-Safty J. Clean Prod. 182, 910 (2018). 10.1016/j.jclepro.2018.02.063

    Article  CAS  Google Scholar 

  35. M.A. Shenashen, S. Kawada, M.M. Selim, W.M. Morsy, H. Yamaguchi, A.A. Alhamid, N. Ohashi, I. Ichinose, S.A. El-Safty, Nanoscale 9, 7947 (2017). https://doi.org/10.1039/c7nr01ss092c

    Article  PubMed  CAS  Google Scholar 

  36. S.A. El-Safty, M.A. Shenashen, Sens. Actuators B Chem. 183, 58 (2013). https://doi.org/10.1016/j.snb.2013.03.041

    Article  CAS  Google Scholar 

  37. M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Analyst. 139, 6393 (2014). https://doi.org/10.1039/c4an00980k

    Article  PubMed  CAS  Google Scholar 

  38. D. Shasha, M. Mupa, N. Muzarabani, L. Gwatidzo, C. Machingauta, J. Environ. Sci. Technol. 8, 83 (2015). https://doi.org/10.3923/jest.2015.83.90

    Article  CAS  Google Scholar 

  39. F.M.D. Chequer, G.A.R. de Oliveira, E.R.A. Ferraz, J.C. Cardoso, M.V.B. Zanoni, A.P. de Oliveira, in Eco-Friendly Textile Dyeing and Finishing, ed. by M. Günay (IntechOpen, London, 2013), pp. 151–176

    Google Scholar 

  40. Z. Salahshoor, A. Shahbazi, Eur. J. Environ. Sci. 4, 116 (2014). https://doi.org/10.14712/23361964.2014.7

    Article  Google Scholar 

  41. S. Gita, A. Hussan, T.G. Choudhury, Environ. Ecol. 35, 2349 (2017). https://www.cabdirect.org/cabdirect/abstract/20173297379

  42. H.F. Khan, Y.C.E. Yang, H. Xie, C. Ringler, Hydrol. Earth Syst. Sci. 21, 6275 (2017). https://doi.org/10.5194/hess-21-6275-2017

    Article  Google Scholar 

  43. M.O. Awaleh, Y.D. Soubaneh, Hydrol. Current Res. 5, 164 (2014). https://doi.org/10.4172/2157-7587.1000164

    Article  CAS  Google Scholar 

  44. J.M. Gomez, J. Galan, A. Rodriguez, G.M. Walker, J. Environ. Manag. 146, 355 (2014). https://doi.org/10.1016/j.jenvman.2014.07.041

    Article  CAS  Google Scholar 

  45. I. Akbartabar, M. E. Yazdanshenas, H.-A. Tayebi, N. Nasirizadeh, Iran J. Health Sci. 5, 17 (2017). https://doi.org/10.29252/jhs.5.3.17

    Article  Google Scholar 

  46. T. Chen, X. Peng, H. Dai, J. Porous Mater. 23, 987 (2016). https://doi.org/10.1007/s10934-016-0156-5

    Article  CAS  Google Scholar 

  47. V. Zeleňák, D. Halamová, A. Zeleňáková, V. Girman, J. Porous Mater. 23, 1645 (2016). https://doi.org/10.1007/s10934-016-0224-x

    Article  CAS  Google Scholar 

  48. A. Maleki, T. Kari, M. Aghaei, J. Porous Mater. 24, 1481 (2017). https://doi.org/10.1007/s10934-017-0388-z

    Article  CAS  Google Scholar 

  49. T.M. Albayati, C.M. Alwan, O.S. Mahdy, Korean J. Chem. Eng. 34, 259 (2017). https://doi.org/10.1007/s11814-016-0231-2

    Article  CAS  Google Scholar 

  50. R. Nicola, O. Costişor, C. Ianăşi, R. Lazău, L. Săcărescu, D. Niznansky, A. Ercuţa, A.-M. Putz, C. Savii. Studia UBB Chemia LXIII. 4, 15 (2018). https://studia.ubbcluj.ro/download/pdf/1193.pdf

  51. M. Aliahmad, N. Nasiri Moghaddam, Mater. Sci-Poland, 31, 264 (2013). 10.2478/s13536–012–0100–6

    Article  CAS  Google Scholar 

  52. R.A. Brand, Nucl. Instrum. Meth. B 28, 398 (1987). https://doi.org/10.1016/0168-583X(87)90182-0

    Article  Google Scholar 

  53. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309 (1938). https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  54. M. Naderi, in Progress in Filtration and Separation, ed. by S. Tarleton (2015), pp. 585–608. https://doi.org/10.1016/B978-0-12-384746-1.00014-8

  55. I. Mihalca, A. Ercuţa, J. Optoelectron. Adv. M. 5, 245 (2003) https://joam.inoe.ro/arhiva/pdf5_1/Mihalca.pdf

  56. S. Zhu, Y. Leng, M. Yan, X. Tuo, J. Yang, L. Almásy, Q. Tian, G. Sun, L. Zou, Q. Li, J. Courtois, H. Zhang, Appl. Surf. Sci. 447, 381 (2018). https://doi.org/10.1016/j.apsusc.2018.04.016

    Article  CAS  Google Scholar 

  57. B.M. Babic, S.K. Milonjic, M.J. Polovina, B.V. Kaludierovic, Carbon 37, 477 (1999). https://www.deepdyve.com/lp/elsevier/point-of-zero-charge-and-intrinsic-equilibrium-constants-of-activated-2M5xt0M29W

  58. A. Xie, J. Dai, X. Chen, J. He, Z. Chang, Y. Yan, C. Li, RSC Adv. 6, 72985 (2016). https://doi.org/10.1039/C6RA17286E

    Article  CAS  Google Scholar 

  59. L.A. Kafshgari, M. Ghorbani A. Azizi, Appl. Surf. Sci., 419, 70 (2017). 10.1016/j.apsusc.2017.05.019

    Article  CAS  Google Scholar 

  60. S.G. Muntean, M.A. Nistor, R. Ianoș, C. Păcurariu, A. Căpraru, V.-A. Surdu, Appl. Surf. Sci. 481, 825 (2019). https://doi.org/10.1016/j.apsusc.2019.03.161

    Article  CAS  Google Scholar 

  61. A.F. Gross, M.R. Diehl, K.C. Beverly, E.K. Richman, S.H. Tolbert, J. Phys. Chem B. 107, 5475 (2003). https://doi.org/10.1021/jp034240n

    Article  CAS  Google Scholar 

  62. A.H. Lu, W.C. Li, A. Kiefer, W. Schmidt, E. Bill, G. Fink, F. Schuth, J. Am. Chem. Soc. 126, 8616 (2004). https://doi.org/10.1021/ja0486521

    Article  PubMed  CAS  Google Scholar 

  63. W. Zhao, J. Gu, L. Zhang, H. Chen, J. Shi, J. Am. Chem. Soc. 127, 8916 (2005). https://doi.org/10.1021/ja051113r

    Article  PubMed  CAS  Google Scholar 

  64. F. Ahangaran, A. Hassanzadeh, S. Nouri, Int. Nano Lett. 3, 23 (2013). https://doi.org/10.1186/2228-5326-3-23

    Article  CAS  Google Scholar 

  65. M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo, N. Nakamura, H.E. Toma, J. Magn. Magn. Mater. 279, 210 (2004). https://doi.org/10.1016/j.jmmm.2004.01.094

    Article  CAS  Google Scholar 

  66. A. Chen, Z. Wang, G. Quan, X. Peng, X. Pan, R. Wang, Y. Xu, G. Li, C. Wu, Int. J. Nanomedicine 7, 199 (2012). https://doi.org/10.2147/IJN.S26763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, J. Am. Chem. Soc. 62, 1723 (1940). https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  68. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015). https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  69. Á. Szegedi, Z. Kónya, D. Méhn, E. Solymár, G. Pál-Borbély, Z.E. Horváth, L.P. Biró, I. Kiricsi, Appl. Catal. A 272, 257 (2004). https://doi.org/10.1016/j.apcata.2004.05.057

    Article  CAS  Google Scholar 

  70. A.-M. Putz, K. Wang, A. Len, J. Plocek, P. Bezdicka, G.P. Kopitsa, T.V. Khamova, C. Ianăşi, L. Săcărescu, Z. Mitróová, C. Savii, M. Yan, L. Almásy, Appl. Surf. Sci. 424, 275 (2017). https://doi.org/10.1016/j.apsusc.2017.04.121

    Article  CAS  Google Scholar 

  71. K. Praveena, K. Sadhana, H.S. Virk, Solid State Phenom 232, 45 (2015). https://doi.org/10.4028/www.scientific.net/SSP.232.45

    Article  Google Scholar 

  72. T.M.N. de Paiva, T.J.M. Fraga, D.C.S. Sales, M.N. Carvalho, M.A. da Motta Sobrinho, Water Sci. Technol. 78, 1576 (2018). 10.2166/wst.2018.434.

    Article  PubMed  CAS  Google Scholar 

  73. S. Yang, X. Yang, X. Shao, R. Niu, L. Wang, J. Hazard. Mater. 186, 659 (2011). https://doi.org/10.1016/j.jhazmat.2010.11.057

    Article  PubMed  CAS  Google Scholar 

  74. C.K. Lim, H.H. Bay, C.H. Neoh, A. Aris, Z.A. Abdul Majid, Z. Ibrahim, Environ. Sci. Pollut. Res. 20, 7243 (2013). 10.1007/s11356–013–1725–7

    Article  CAS  Google Scholar 

  75. F. Marahel, M. Ali Khan, E. Marahel, Desalin. Water Treat. 53, 826 (2015). 10.1080/19443994.2013.846240

    Article  CAS  Google Scholar 

  76. S. Ranganathan, R.D. Hood, Teratog. Carcinog. Mutagen. 9, 29 (1989). https://doi.org/10.1002/tcm.1770090105

    Article  PubMed  CAS  Google Scholar 

  77. B.K. Korbahti, M.A. Rauf, Chem. Eng. J. 138, 166 (2008). https://doi.org/10.1016/j.cej.2007.06.016

    Article  CAS  Google Scholar 

  78. V.K. Gupta, A. Mittal, R. Jain, M. Mathur, S. Sikarwar, J. Colloid Interface Sci. 303, 80 (2006). https://doi.org/10.1016/j.jcis.2006.07.036

    Article  PubMed  CAS  Google Scholar 

  79. R. Ianos, C. Pacurariu, S.G. Muntean, E. Muntean, M.A. Nistor, D. Niznanský, J. Alloys Comp. 741, 1235 (2018). https://doi.org/10.1016/j.jallcom.2018.01.240

    Article  CAS  Google Scholar 

  80. A.M.S. Baptisttella, A.A.D. Araújo, M.C. Barreto, V.S. Madeira, M. A. da Motta Sobrinho, Environ. Technol. (2018). 10.1080/09593330.2018.1466916

    Article  PubMed  Google Scholar 

  81. B.M.W.P.K. Amarasinghe, G.K. Jayathunga, in The Proceeding of 3rd International Conference on Chemical & Bioprocess Engineering. https://dl.lib.mrt.ac.lk/handle/123/12130

  82. M. Wawrzkiewicz, M. Wiśniewska, V.M. Gun'ko, V.I. Zarko, Powder Technol. 278, 306 (2015). https://doi.org/10.1016/j.powtec.2015.03.035

    Article  CAS  Google Scholar 

  83. S. Yoon, J.J. Calvo, M.C. So, Crystals 9, 17 (2019). https://doi.org/10.3390/cryst9010017

    Article  CAS  Google Scholar 

  84. P. Rajeshkanna, N. S. Nagarajan, S. Meenakshi, Environ. Sci. Ind. J. 14, 169 (2018). https://www.tsijournals.com/articles/rhodamine-b-and-acid-orange-7-adsorption-onto-activated-carbon-from-deinked-pulp-waste-sludge-adsorption-and-kinetics-st.pdf

  85. Y.-P. Chang, C.-L. Ren, Q. Yang, Z.-Y. Zhang, L.-J. Dong, X.-G. Chen, D.-S. Xue, Appl. Surf. Sci. 257, 8610 (2011). https://www.cheric.org/research/tech/periodicals/doi.php?art_seq=903082

  86. H. Ren, D.D. Kulkarni, R. Kodiyath, W. Xu, I. Choi, V.V. Tsukruk, A.C.S. Appl, Mater. Interfaces 6, 2459 (2014). https://doi.org/10.1021/am404881p

    Article  CAS  Google Scholar 

  87. K. Adebowale, B.I. Olu-Owolabi, C.E. Chigbundu, J. Encapsulation and Adsorption Sciences 4, 89 (2014). https://doi.org/10.4236/jeas.2014.43010

    Article  Google Scholar 

  88. S. Chowdhury, R. Mishra, P. Saha, P. Kushwaha, Desalination 265, 159 (2011). https://doi.org/10.1016/j.desal.2010.07.047

    Article  CAS  Google Scholar 

  89. S.S. Bayazit, Desalin. Water Treat 52, 6966 (2014). https://doi.org/10.1080/19443994.2013.821045

    Article  CAS  Google Scholar 

  90. I. Safarik, J. Filip, K. Horska, M. Nowakova, J. Tucek, M. Safarikova, H. Hasimoto, J. Takada, R. Zboril, Int. J. Environ. Sci. Technol. 12, 673 (2015). https://doi.org/10.1007/s13762-013-0455-1

    Article  CAS  Google Scholar 

  91. M. Safarikova, L. Ptackova, I. Kibrikova, I. Safarik, Chemosphere 59, 831 (2005). https://doi.org/10.1016/j.chemosphere.2004.10.062

    Article  PubMed  CAS  Google Scholar 

  92. N.F. Cardoso, R.B. Pinto, E.C. Lima, T. Calvete, C.V. Amavisca, B. Royer, M.L. Cunha, T.H.M. Fernandes, I.S. Pinto, Desalination 269, 92 (2011). https://doi.org/10.1016/j.desal.2010.10.047

    Article  CAS  Google Scholar 

  93. T.K. Mahto, S. Chandra, C. Haldar, S.K. Sahu, RSC Adv. 5, 47909 (2015). https://doi.org/10.1039/C5RA08284F

    Article  CAS  Google Scholar 

  94. O.M. Paşka, C. Păcurariu, S.G. Muntean, RSC Adv. 4, 62621 (2014). https://doi.org/10.1039/C4RA10504D

    Article  CAS  Google Scholar 

  95. S. Jing, X. Wang, Y. Tan, Appl. Surf. Sci. 441, 654 (2018). https://doi.org/10.1016/j.apsusc.2018.01.259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Assoc. Prof. RNDr. Daniel Nižňanský (1963–2018). This work was supported by Programs 2 and 4 of the “Coriolan Dragulescu” Institute of Chemistry, Research Projects 2.4 and 4.2. The authors thank the Romanian Academy and the Inter-Academic Exchange Program between Academy of Sciences of the Czech Republic and Romanian Academy and the Inter-Academic Exchange Program between Romanian Academy and the Hungarian Academy of Sciences. Authors thank also to Dr. Aurel Ercuţa from West University of Timişoara, Romania, for magnetic measurements and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Simona-Gabriela Muntean or Ana-Maria Putz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicola, R., Costişor, O., Muntean, SG. et al. Mesoporous magnetic nanocomposites: a promising adsorbent for the removal of dyes from aqueous solutions. J Porous Mater 27, 413–428 (2020). https://doi.org/10.1007/s10934-019-00821-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-019-00821-y

Keywords

Navigation