Skip to main content
Log in

Study on inactivation of marine microorganisms by AgI/ Bi2O2CO3 composite photocatalyst

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

AgI/Bi2O2CO3 composite photocatalyst was prepared by in situ deposition. The prepared photocatalyst was characterized by XRD, SEM, TEM, XPS, UV-Vis diffuse reflectance spectroscopy (DRS). The fluorocarbon resin coating (PEVE) was modified with photocatalysts of different composite proportions, and its sterilization performance for ship ballast water was evaluated. The results showed that AgI/Bi2O2CO3-0.3 has the best photocatalytic sterilization performance under simulated sunlight irradiation and its sterilization rate can reach 98%. The AgI/Bi2O2CO3 heterojunction was successfully synthesized. The mechanism of photocatalytic sterilization was explored, it has been proved that holes were the main active species involved in the photocatalytic sterilization reaction. The holes oxidize the Cl in seawater into available chlorine. This paper provides a new idea for the treatment of ship ballast water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bradie JN, Drake DAR, Ogilvie D, Casas-Monroy O, Bailey SA (2021) Ballast water exchange plus treatment lowers species invasion rate in freshwater ecosystems. Environ Sci Technol 55(1):82–89. https://doi.org/10.1021/acs.est.0c05238

    Article  CAS  PubMed  Google Scholar 

  2. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  CAS  PubMed  Google Scholar 

  3. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J Photochem Photobiol, C 9(1):1–12. https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Article  CAS  Google Scholar 

  4. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38(1):253–278. https://doi.org/10.1039/b800489g

    Article  CAS  PubMed  Google Scholar 

  5. Wu Y, Wang H, Tu W, Wu S, Chew JW (2019) Effects of composition faults in ternary metal chalcogenides (ZnxIn2S3+x, x = 1–5) layered crystals for visible-light-driven catalytic hydrogen generation and carbon dioxide reduction. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117810

    Article  Google Scholar 

  6. Zhang J, Wang H, Yuan X, Zeng G, Tu W, Wang S (2019) Tailored indium sulfide-based materials for solar-energy conversion and utilization. J Photochem Photobiol, C 38:1–26. https://doi.org/10.1016/j.jphotochemrev.2018.11.001

    Article  CAS  Google Scholar 

  7. Zulmajdi SLN, Zamri NII, Yasin HM, Kusrini E, Hobley J, Usman A (2020) Comparative study on the adsorption, kinetics, and thermodynamics of the photocatalytic degradation of six different synthetic dyes on TiO2 nanoparticles. React Kinet Mech Catal 129(1):519–534. https://doi.org/10.1007/s11144-019-01701-x

    Article  CAS  Google Scholar 

  8. Verinda SB, Muniroh M, Yulianto E, Nur M (2022) Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: spectroscopic, kinetics, and antibacterial analysis. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e10137

    Article  PubMed  PubMed Central  Google Scholar 

  9. Suhaimi NAA, Shahri NNM, Samat JH, Kusrini E, Usman A (2021) Domination of methylene blue over rhodamine B during simultaneous photocatalytic degradation by TiO2 nanoparticles in an aqueous binary solution under UV irradiation. React Kinet Mech Catal 135(1):511–527. https://doi.org/10.1007/s11144-021-02098-2

    Article  CAS  Google Scholar 

  10. Kong CPY, Suhaimi NAA, Shahri NNM, Lim JW, Usman A (2022) Auramine O UV photocatalytic degradation on TiO2 nanoparticles in a heterogeneous aqueous solution. Catalysts. https://doi.org/10.3390/catal12090975

    Article  Google Scholar 

  11. Di J, Xia J, Ji M, Li H, Xu H, Li H, Chen R (2015) The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi2MoO6. Nanoscale 7(26):11433–11443. https://doi.org/10.1039/c5nr01350j

    Article  CAS  PubMed  Google Scholar 

  12. Kim TW, Choi KS (2014) Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174):990–994. https://doi.org/10.1126/science.1246913

    Article  CAS  PubMed  Google Scholar 

  13. Ni Z, Sun Y, Zhang Y, Dong F (2016) Fabrication, modification and application of (BiO)2CO3-based photocatalysts: a review. Appl Surf Sci 365:314–335. https://doi.org/10.1016/j.apsusc.2015.12.231

    Article  CAS  Google Scholar 

  14. Ye L, Su Y, Jin X, Xie H, Zhang C (2014) Recent advances in BiOX (X = Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ Sci: Nano. https://doi.org/10.1039/c3en00098b

    Article  Google Scholar 

  15. Zhou L, Jin C, Yu Y, Chi F, Ran S, Lv Y (2016) Molten salt synthesis of Bi2WO6 powders with enhanced visible-light-induced photocatalytic activities. J Alloy Compd 680:301–308. https://doi.org/10.1016/j.jallcom.2016.04.144

    Article  CAS  Google Scholar 

  16. Chen J, Mei W, Huang Q, Chen N, Lu C, Zhu H, Chen J, Hou W (2016) Highly efficient three-dimensional flower-like AgI/Bi2O2CO3 heterojunction with enhanced photocatalytic performance. J Alloy Compd 688:225–234. https://doi.org/10.1016/j.jallcom.2016.07.196

    Article  CAS  Google Scholar 

  17. Feng Y, Zhang Z, Zhao K, Lin S, Li H, Gao X (2021) Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J Colloid Interface Sci 583:499–509. https://doi.org/10.1016/j.jcis.2020.09.089

    Article  CAS  PubMed  Google Scholar 

  18. Hu X, Zhao H, Liang Y, Chen R (2019) Energy level mediation of (BiO)2CO3 via Br doping for efficient molecular oxygen activation and ciprofloxacin photodegradation. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2019.117966

    Article  Google Scholar 

  19. Li JH, Ren J, Hao YJ, Zhou EP, Wang Y, Wang XJ, Su R, Liu Y, Qi XH, Li FT (2021) Construction of beta-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. J Hazard Mater 401:123262. https://doi.org/10.1016/j.jhazmat.2020.123262

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Zhou Y, Yu S, Xie Z, Chen Y, Zheng K, Mossin S, Lin W, Meng J, Pullerits T, Zheng K (2020) Defect state assisted Z-scheme charge recombination in Bi2O2CO3/graphene quantum dot composites for photocatalytic oxidation of NO. ACS Appl Nano Mater 3(1):772–781. https://doi.org/10.1021/acsanm.9b02276

    Article  CAS  Google Scholar 

  21. Man L, Xu Q, Li W, Chen W, Zheng W, Ma D-K (2020) Oxygen vacancy engineering of Bi2O2CO3 hierarchical microspheres for enhanced adsorption of Cd2+ ions and photocatalytic degradation of Rodamine B. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.145647

    Article  Google Scholar 

  22. Qiang Z, Liu X, Li F, Li T, Zhang M, Singh H, Huttula M, Cao W (2021) Iodine doped Z-scheme Bi2O2CO3/Bi2WO6 photocatalysts: Facile synthesis, efficient visible light photocatalysis, and photocatalytic mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126327

    Article  Google Scholar 

  23. Zhang G-Y, Wang J-J, Shen X-Q, Wang J-J, Wang B-Y, Gao D-Z (2019) Br-doped Bi2O2CO3 nanosheets with improved electronic structure and accelerated charge migration for outstanding photocatalytic behavior. Appl Surf Sci 470:63–73. https://doi.org/10.1016/j.apsusc.2018.11.103

    Article  CAS  Google Scholar 

  24. Guo Y, Nan J, Xu Y, Cui F, Shi W, Zhu Y (2020) Thermodynamic and dynamic dual regulation Bi2O2CO3/Bi5O7I enabling high-flux photogenerated charge migration for enhanced visible-light-driven photocatalysis. J Mater Chem A 8(20):10252–10259. https://doi.org/10.1039/d0ta02588g

    Article  CAS  Google Scholar 

  25. Li J, Wu X, Wan Z, Chen H, Zhang G (2019) Full spectrum light driven photocatalytic in-situ epitaxy of one-unit-cell Bi2O2CO3 layers on Bi2O4 nanocrystals for highly efficient photocatalysis and mechanism unveiling. Appl Catal B Environ 243:667–677. https://doi.org/10.1016/j.apcatb.2018.10.067

    Article  CAS  Google Scholar 

  26. Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo MH (2008) Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed Engl 47(41):7931–7933. https://doi.org/10.1002/anie.200802483

    Article  CAS  PubMed  Google Scholar 

  27. Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo MH (2009) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry 15(8):1821–1824. https://doi.org/10.1002/chem.200802327

    Article  CAS  PubMed  Google Scholar 

  28. Wen X-J, Niu C-G, Zhang L, Liang C, Guo H, Zeng G-M (2018) Photocatalytic degradation of ciprofloxacin by a novel Z-scheme CeO2–Ag/AgBr photocatalyst: influencing factors, possible degradation pathways, and mechanism insight. J Catal 358:141–154. https://doi.org/10.1016/j.jcat.2017.11.029

    Article  CAS  Google Scholar 

  29. Cheng H, Huang B, Dai Y, Qin X, Zhang X (2010) One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances. Langmuir 26(9):6618–6624. https://doi.org/10.1021/la903943s

    Article  CAS  PubMed  Google Scholar 

  30. Yu H, Liu L, Wang X, Wang P, Yu J, Wang Y (2012) The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles. Dalton Trans 41(34):10405–10411. https://doi.org/10.1039/c2dt30864a

    Article  CAS  PubMed  Google Scholar 

  31. An C, Jiang W, Wang J, Wang S, Ma Z, Li Y (2013) Synthesis of three-dimensional AgI@TiO2 nanoparticles with improved photocatalytic performance. Dalton Trans 42(24):8796–8801. https://doi.org/10.1039/c3dt50736j

    Article  CAS  PubMed  Google Scholar 

  32. Xu H, Zhu J, Song Y, Zhu T, Zhao W, Song Y, Da Z, Liu C, Li H (2015) Fabrication of AgX-loaded Ag2CO3 (X = Cl, I) composites and their efficient visible-light-driven photocatalytic activity. J Alloy Compd 622:347–357. https://doi.org/10.1016/j.jallcom.2014.09.148

    Article  CAS  Google Scholar 

  33. Chen Z, Wang W, Zhang Z, Fang X (2013) High-efficiency visible-light-driven Ag3PO4/AgI Photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J Phys Chem C 117(38):19346–19352. https://doi.org/10.1021/jp406508y

    Article  CAS  Google Scholar 

  34. Liang J, Shan C, Zhang X, Tong M (2015) Bactericidal mechanism of BiOI–AgI under visible light irradiation. Chem Eng J 279:277–285. https://doi.org/10.1016/j.cej.2015.05.024

    Article  CAS  Google Scholar 

  35. Reddy DA, Lee S, Choi J, Park S, Ma R, Yang H, Kim TK (2015) Green synthesis of AgI-reduced graphene oxide nanocomposites: toward enhanced visible-light photocatalytic activity for organic dye removal. Appl Surf Sci 341:175–184. https://doi.org/10.1016/j.apsusc.2015.03.019

    Article  CAS  Google Scholar 

  36. Yi J, Huang L, Wang H, Yu H, Peng F (2015) AgI/TiO2 nanobelts monolithic catalyst with enhanced visible light photocatalytic activity. J Hazard Mater 284:207–214. https://doi.org/10.1016/j.jhazmat.2014.11.020

    Article  CAS  PubMed  Google Scholar 

  37. Zhou RR, Zhang DP, Wang PF, Huang YH (2021) Regulation of excitons dissociation in AgI/Bi3O4Br for advanced reactive oxygen species generation towards photodegradation. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2020.119820

    Article  Google Scholar 

  38. Wen XJ, Qian L, Lv XX, Sun J, Guo J, Fei ZH, Niu CG (2020) Photocatalytic degradation of sulfamethazine using a direct Z-Scheme AgI/Bi4V2O11 photocatalyst: mineralization activity, degradation pathways and promoted charge separation mechanism. J Hazard Mater 385:121508. https://doi.org/10.1016/j.jhazmat.2019.121508

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Wang GW, Li B, Ma X, Hu YA, Cheng HF (2021) A high-efficiency mediator-free Z-scheme Bi2MoO6/AgI heterojunction with enhanced photocatalytic performance. Sci Total Environ 784:147227. https://doi.org/10.1016/j.scitotenv.2021.147227

    Article  CAS  PubMed  Google Scholar 

  40. Narayana B, Mathew M, Vipin K, Sreekumar NV, Cherian T (2005) An easy spectrophotometric method for the determination of hypochlorite using thionin. J Anal Chem 60(8):706–709. https://doi.org/10.1007/s10809-005-0166-y

    Article  CAS  Google Scholar 

  41. Wang FG, Song YP, He QC, Zhang CL, Lai JF, Zhan S, Zhou F (2021) Performance tuning and optimisation of 2D–2D-like g-C3N4 modified Bi2O2CO3 n–n homotypic heterojunction as an inactivating photocatalytic material. J Environ Chem Eng 9:106176. https://doi.org/10.1016/j.jece.2021.106176

    Article  CAS  Google Scholar 

  42. Ye HF, Lin HL, Cao J, Chen SF, Chen Y (2015) Enhanced visible light photocatalytic activity and mechanism of BiPO4 nanorods modified with AgI nanoparticles. J Mol Catal A: Chem 397:85–92. https://doi.org/10.1016/j.molcata.2014.11.005

    Article  CAS  Google Scholar 

  43. Zhao Z, Hao Y, Song X, Deng Z (2020) High visible-light rhodamine B degradation activity over two-dimensional Bi2O2CO3/BiOCl heterojunction through the cohesive and efficient electronic transmission channel. J Mater Sci: Mater Electron 31(9):6726–6734. https://doi.org/10.1007/s10854-020-03229-6

    Article  CAS  Google Scholar 

  44. Hu D, Zhang K, Yang Q, Wang M, Xi Y, Hu C (2014) Super-high photocatalytic activity of Fe2O3 nanoparticles anchored on Bi2O2CO3 nanosheets with exposed 0 0 1 active facets. Appl Surf Sci 316:93–101. https://doi.org/10.1016/j.apsusc.2014.07.185

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (No.52271340, 51879018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2188 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, F., Zhan, S. et al. Study on inactivation of marine microorganisms by AgI/ Bi2O2CO3 composite photocatalyst. Reac Kinet Mech Cat 136, 535–548 (2023). https://doi.org/10.1007/s11144-022-02341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02341-4

Keywords

Navigation