Skip to main content
Log in

Sol–gel prepared Co–Mg–O oxide systems: redox behavior, thermal stability and catalytic performance in CO oxidation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, Co–Mg–O oxide systems were prepared via a sol–gel technique. The cobalt loading in the samples was varied from 1 to 45 wt% (in relation to Co3O4). During the synthesis, magnesium methoxide was hydrolyzed by an aqueous solution of cobalt nitrate of corresponding concentration. The desired pH value of the solution was set by the addition of ammonia or nitric acid. The decomposition of xerogel was examined using thermogravimetric method. The prepared Co–Mg–O oxide samples were characterized by low-temperature nitrogen adsorption, X-ray diffraction analysis, and diffuse reflectance UV–vis spectroscopy. Finally, the samples were tested in consecutive redox cycles (temperature-programmed reduction in hydrogen followed by reoxidation in air) and in a model reaction of carbon monoxide oxidation studied under prompt thermal aging conditions. As found, in the case of as-prepared samples, cobalt interacts with MgO with the formation of such a solid solution as MgCo2O4. With an increase in the Co3O4 loading, this interaction becomes stronger. Each reduction/oxidation cycle leads to an emergence of a part of cobalt from the solid solution, thus increasing the amount of isolated Co3O4 particles distributed within the MgO matrix. The sample prepared with the ammonia addition exhibited the highest stability in catalytic runs if compared with other samples. An increase in Co3O4 loading from 5 to 30% decreases the light-off temperature in first runs but affects negatively the thermal stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Letsholathebe D, Thema FT, Mphale K, Mohamed HEA, Holonga KJ, Ketlhwaafetse R, Chimidza S (2021) Optical and structural stability of Co3O4 nanoparticles for photocatalytic applications. Mater Today Proc 36:499–503. https://doi.org/10.1016/j.matpr.2020.05.205

    Article  CAS  Google Scholar 

  2. Aadil M, Nazik G, Zulfiqar S, Shakir I, Aly Aboud MF, Agboola PO, Haider S, Warsi MF (2021) Fabrication of nickel foam supported Cu-doped Co3O4 nanostructures for electrochemical energy storage applications. Ceram Int 47:9225–9233. https://doi.org/10.1016/j.ceramint.2020.12.048

    Article  CAS  Google Scholar 

  3. Ma J, Wei H, Liu Y, Ren X, Li Y, Wang F, Han X, Xu E, Cao X, Wang G, Ren F, Wei S (2020) Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: a review. Int J Hydrogen Energy 45:21205–21220. https://doi.org/10.1016/j.ijhydene.2020.05.280

    Article  CAS  Google Scholar 

  4. Zhang W, Tay HL, Lim SS, Wang Y, Zhong Z, Xu R (2010) Supported cobalt oxide on MgO: highly efficient catalysts for degradation of organic dyes in dilute solutions. Appl Catal B 95:93–99. https://doi.org/10.1016/j.apcatb.2009.12.014

    Article  CAS  Google Scholar 

  5. Nyathi TM, Fadlalla MI, Fischer N, York APE, Olivier EJ, Gibson EK, Wells PP, Claeys M (2021) Support and gas environment effects on the preferential oxidation of carbon monoxide over Co3O4 catalysts studied in situ. Appl Catal B 297:120450. https://doi.org/10.1016/j.apcatb.2021.120450

    Article  CAS  Google Scholar 

  6. Xiao B, Zhao K, Zhang L, Cai T, Zhang X, Wang Z, Yuan J, Yang L, Gao P, He D (2018) A green and facile synthesis of Co3O4 monolithic catalyst with enhanced total oxidation of propane performance. Catal Commun 116:1–4. https://doi.org/10.1016/j.catcom.2018.07.013

    Article  CAS  Google Scholar 

  7. Fu H, Lin J, Cao S, Chen B, Huang R, Chen H, Ding T, Sun P, Luo L (2022) Enhancing the anti-K poisoning performance of Co3O4 catalyst for Toluene oxidation by modifying MnOx. J Environ Chem Eng 10:107095. https://doi.org/10.1016/j.jece.2021.107095

    Article  CAS  Google Scholar 

  8. Michel L, Sall S, Dintzer T, Robert C, Demange A, Caps V (2021) Graphene-supported 2D cobalt oxides for catalytic applications. Faraday Discuss 227:259–273. https://doi.org/10.1039/C9FD00110G

    Article  CAS  PubMed  Google Scholar 

  9. Zhu J, Kailasam K, Fischer A, Thomas A (2011) Supported cobalt oxide nanoparticles as catalyst for aerobic oxidation of alcohols in liquid phase. ACS Catal 1:342–347. https://doi.org/10.1021/cs100153a

    Article  CAS  Google Scholar 

  10. Tang X, Wang J, Ma Y, Li J, Zhang X, Liu B (2021) Low-temperature and stable CO oxidation of Co3O4/TiO2 monolithic catalysts. Chin Chem Lett 32:48–52. https://doi.org/10.1016/j.cclet.2020.11.008

    Article  CAS  Google Scholar 

  11. Klegová A, Pacultová K, Fridrichová D, Volodarskaja A, Kovanda F, Jirátová K (2017) Cobalt oxide catalysts on commercial supports for N2O decomposition. Chem Eng Technol 40:981–990. https://doi.org/10.1002/ceat.201600628

    Article  CAS  Google Scholar 

  12. Zhang J, Hu H, Xu J, Wu G, Zeng Z (2014) N2O decomposition over K/Na-promoted Mg/Zn-Ce-cobalt mixed oxides catalysts. J Environ Sci (China) 26:1437–1443. https://doi.org/10.1016/j.jes.2014.05.009

    Article  CAS  PubMed  Google Scholar 

  13. Zamudio MA, Bensaid S, Fino D, Russo N (2011) Influence of the MgCo2O4 preparation method on N2O catalytic decomposition. Ind Eng Chem Res 50:2622–2627. https://doi.org/10.1021/ie100658w

    Article  CAS  Google Scholar 

  14. Li Y, Wang X (2019) MgO modifying Al2O3 to load cobalt oxide for catalytic N2O decomposition. Catal Lett 149:1856–1863. https://doi.org/10.1007/s10562-019-02789-5

    Article  CAS  Google Scholar 

  15. Furusawa T, Tsutsumi A (2005) Development of cobalt catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification. Appl Catal A 278:195–205. https://doi.org/10.1016/j.apcata.2004.09.034

    Article  CAS  Google Scholar 

  16. El-Shobaky GA, Doheim MM, Ghozza AM, El-Boohy HA (2002) Catalytic conversion of ethanol over Co3O4/MgO system treated with γ-irradiation. Mater Lett 57:525–531. https://doi.org/10.1016/S0167-577X(02)00823-6

    Article  CAS  Google Scholar 

  17. Wu M, Fu Y, Zhan W, Guo Y, Guo Y, Wang Y, Lu G (2017) Catalytic performance of MgO-supported co catalyst for the liquid phase oxidation of cyclohexane with molecular oxygen. Catalysts 7:155. https://doi.org/10.3390/catal7050155

    Article  CAS  Google Scholar 

  18. Ghozza AM (2003) Surface and catalytic properties of the Co3O4/MgO system doped with Ag2O and MoO3. Adsorp Sci Technol 21:627–642. https://doi.org/10.1260/026361703772776411

    Article  CAS  Google Scholar 

  19. Ghozza AM, El-Shobaky GA, Mokhtar M (2016) Surface and catalytic properties of the Co3O4/MgO system doped with Fe2O3. Adsorp Sci Technol 19:621–634. https://doi.org/10.1260/0263617011494448

    Article  Google Scholar 

  20. Kamioka N, Ichitsubo T, Uda T, Imashuku S, Taninouchi YK, Matsubara E (2008) Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater Trans 49:824–828. https://doi.org/10.2320/matertrans.MBW200721

    Article  CAS  Google Scholar 

  21. Gu S, Hsieh CT, Huq MM, Hsu JP, Ashraf Gandomi Y, Li J (2019) Preparation of MgCo2O4/graphite composites as cathode materials for magnesium-ion batteries. J Solid State Electrochem 23:1399–1407. https://doi.org/10.1007/s10008-018-04186-1

    Article  CAS  Google Scholar 

  22. Kitamura N, Tanabe Y, Ishida N, Idemoto Y (2019) The atomic structure of a MgCo2O4 nanoparticle for a positive electrode of a Mg rechargeable battery. Chem Commun 55:2517–2520. https://doi.org/10.1039/C8CC09713E

    Article  CAS  Google Scholar 

  23. Silambarasan M, Ramesh PS, Geetha D, Venkatachalam V (2017) A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties. J Mater Sci 28:6880–6888. https://doi.org/10.1007/s10854-017-6388-6

    Article  CAS  Google Scholar 

  24. Wu R, Sun J, Ma X, Bao E, Du X, Xu C, Chen H (2021) Uniform MgCo2O4 porous nanoflakes and nanowires with superior electrochemical performance for asymmetric supercapacitors. J Alloys Compd 884:161087. https://doi.org/10.1016/j.jallcom.2021.161087

    Article  CAS  Google Scholar 

  25. Wang H, Mi N, Sun S, Zhang W, Yao S (2021) Oxygen vacancies enhancing capacitance of MgCo2O4 for high performance asymmetric supercapacitors. J Alloys Compd 869:159294. https://doi.org/10.1016/j.jallcom.2021.159294

    Article  CAS  Google Scholar 

  26. Krezhov K, Konstantinov P (1992) On the cationic distribution in MgxCo3-xO4 spinels. J Phys: Cond Matt 4:L543–L548. https://doi.org/10.1088/0953-8984/4/42/001

    Article  CAS  Google Scholar 

  27. Radwan NRE, Ghozza AM, El-Shobaky GA (2003) Solid-solid interactions in Co3O4–MoO3/MgO system. Thermochim Acta 398:211–221. https://doi.org/10.1016/S0040-6031(02)00369-6

    Article  CAS  Google Scholar 

  28. Okamoto NL, Shimokawa K, Tanimura H, Ichitsubo T (2019) Feasible transformation of MgCo2O4 from spinel to defect rocksalt structure under electron irradiation. Scr Mater 167:26–30. https://doi.org/10.1016/j.scriptamat.2019.03.034

    Article  CAS  Google Scholar 

  29. Sexton BA, Hughes AE, Turney TW (1986) An XPS and TPR study of the reduction of promoted Cobalt-Kieselguhr Fischer-Tropsch catalysts. J Catal 97:390–406. https://doi.org/10.1016/0021-9517(86)90011-4

    Article  CAS  Google Scholar 

  30. Tuti S, Pepe F (2008) On the catalytic activity of cobalt oxide for the steam reforming of ethanol. Catal Lett 122:196–203. https://doi.org/10.1007/s10562-007-9370-8

    Article  CAS  Google Scholar 

  31. Sadasivan S, Bellabarba RM, Tooze RP (2013) Size dependent reduction-oxidation-reduction behaviour of cobalt oxide nanocrystals. Nanoscale 5:11139–11146. https://doi.org/10.1039/c3nr02877a

    Article  CAS  PubMed  Google Scholar 

  32. Choya A, de Rivas B, González-Velasco JR, Gutiérrez-Ortiz JI, López-Fonseca R (2019) On the beneficial effect of MgO promoter on the performance of Co3O4/Al2O3 catalysts for combustion of dilute methane. Appl Catal A Gen 582:117099. https://doi.org/10.1016/j.apcata.2019.05.033

    Article  CAS  Google Scholar 

  33. Hafizi A, Rahimpour MR, Heravi M (2019) Experimental investigation of improved calcium-based CO2 sorbent and Co3O4/SiO2 oxygen carrier for clean production of hydrogen in sorption-enhanced chemical looping reforming. Int J Hydrogen Energy 44:17863–17877. https://doi.org/10.1016/j.ijhydene.2019.05.030

    Article  CAS  Google Scholar 

  34. Alalwan HA, Cwiertny DM, Grassian VH (2017) Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: a materials characterization approach to understanding oxygen carrier performance. Chem Eng J 319:279–287. https://doi.org/10.1016/j.cej.2017.02.134

    Article  CAS  Google Scholar 

  35. Idziak K, Czakiert T, Krzywanski J, Zylka A, Kozlowska M, Nowak W (2020) Safety and environmental reasons for the use of Ni-, Co-, Cu-, Mn- and Fe-based oxygen carriers in CLC/CLOU applications: an overview. Fuel 268:117245. https://doi.org/10.1016/j.fuel.2020.117245

    Article  CAS  Google Scholar 

  36. Vedyagin AA, Mishakov IV, Karnaukhov TM, Krivoshapkina EF, Ilyina EV, Maksimova TA, Cherepanova SV, Krivoshapkin PV (2017) Sol-gel synthesis and characterization of two-component systems based on MgO. J SolGel Sci Technol 82:611–619. https://doi.org/10.1007/s10971-017-4321-3

    Article  CAS  Google Scholar 

  37. Veselov GB, Karnaukhov TM, Bauman YI, Mishakov IV, Vedyagin AA (2020) Sol-gel-prepared Ni-Mo-Mg-O system for catalytic transformation of chlorinated organic wastes into nanostructured carbon. Materials 13:4404. https://doi.org/10.3390/ma13194404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ilyina EV, Mishakov IV, Vedyagin AA (2009) Preparation of nanocrystalline VMg(OH)x and VOx·MgO from organometallic precursors. Inorg Mater 45:1267–1270. https://doi.org/10.1134/S0020168509110144

    Article  CAS  Google Scholar 

  39. Veselov GB, Karnaukhov TM, Stoyanovskii VO, Vedyagin AA (2022) Preparation of the nanostructured Ni-Mg-O oxide system by a sol-gel technique at varied pH. Nanomaterials 12:952. https://doi.org/10.3390/nano12060952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vedyagin AA, Karnaukhov TM, Cherepanova SV, Stoyanovskii VO, Rogov VA, Mishakov IV (2019) Synthesis of binary Co-Mg-O oxide system and study of its behavior in reduction/oxidation cycling. Int J Hydrogen Energy 44:20690–20699. https://doi.org/10.1016/j.ijhydene.2018.05.044

    Article  CAS  Google Scholar 

  41. Diao Y, Walawender WP, Sorensen CM, Klabunde KJ, Ricker T (2002) Hydrolysis of magnesium methoxide. effects of toluene on gel structure and gel chemistry. Chem Mater 14:362–368. https://doi.org/10.1021/cm010708s

    Article  CAS  Google Scholar 

  42. Boehm HP, Knözinger H (1983) Nature and estimation of functional groups on solid surfaces. In: Anderson JRA, Boudart M (eds) Catalysis. Springer, Berlin, pp 39–207

    Chapter  Google Scholar 

  43. Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Plyusnin PE, Shubin YV, Mishakov IV (2017) Effect of alumina phase transformation on stability of low-loaded Pd-Rh catalysts for CO oxidation. Top Catal 60:152–161. https://doi.org/10.1007/s11244-016-0726-4

    Article  CAS  Google Scholar 

  44. Vedyagin AA, Stoyanovskii VO, Plyusnin PE, Shubin YV, Slavinskaya EM, Mishakov IV (2018) Effect of metal ratio in alumina-supported Pd-Rh nanoalloys on its performance in three way catalysis. J Alloys Compd 749:155–162. https://doi.org/10.1016/j.jallcom.2018.03.250

    Article  CAS  Google Scholar 

  45. Bokhimi MA, Lopez T, Gomez R (1995) Crystalline structure of MgO prepared by the sol-gel technique with different hydrolysis catalysts. J Solid State Chem 115:411–415. https://doi.org/10.1006/jssc.1995.1152

    Article  CAS  Google Scholar 

  46. Liotta LF, Pantaleo G, Macaluso A, di Carlo G, Deganello G (2003) CoOx catalysts supported on alumina and alumina-baria: influence of the support on the cobalt species and their activity in NO reduction by C3H6 in lean conditions. Appl Catal A 245:167–177. https://doi.org/10.1016/S0926-860X(02)00652-X

    Article  CAS  Google Scholar 

  47. Van de Water GA, Bezemer GL, Bergwerff JA, Versluijs-Helder M, Weckhuysen BM, de Jong KP (2006) Spatially resolved UV-Vis microspectroscopy on the preparation of alumina-supported co Fischer-Tropsch catalysts: linking activity to co distribution and speciation. J Catal 242:287–298. https://doi.org/10.1016/j.jcat.2006.06.004

    Article  CAS  Google Scholar 

  48. Solsona B, Davies TE, Garcia T, Vázquez I, Dejoz A, Taylor SH (2008) Total oxidation of propane using nanocrystalline cobalt oxide and supported cobalt oxide catalysts. Appl Catal B 84:176–184. https://doi.org/10.1016/j.apcatb.2008.03.021

    Article  CAS  Google Scholar 

  49. Basąg S, Kovanda F, Piwowarska Z, Kowalczyk A, Pamin K, Chmielarz L (2017) Hydrotalcite-derived co-containing mixed metal oxide catalysts for methanol incineration : role of cobalt content, Mg/Al ratio and calcination temperature. J Therm Anal Calorim 129:1301–1311. https://doi.org/10.1007/s10973-017-6348-7

    Article  CAS  Google Scholar 

  50. Pepe F, Schiavello M, Minelli G, Jacono ML (1979) Structural characterization of the ternary system cobaltous oxide-zinc oxide-magnesium oxide solid solutions. Z Phys Chem 115:7–15. https://doi.org/10.1524/zpch.1979.115.1.007

    Article  CAS  Google Scholar 

  51. Moogi S, Nakka L, Potharaju SSP, Ahmed A, Farooq A, Jung SC, Rhee GH, Park YK (2021) Copper promoted Co/MgO: a stable and efficient catalyst for glycerol steam reforming. Int J Hydrogen Energy 46:18073–18084. https://doi.org/10.1016/j.ijhydene.2020.08.190

    Article  CAS  Google Scholar 

  52. Ilyina EV, Mishakov IV, Vedyagin AA, Bedilo AF (2013) Aerogel method for preparation of nanocrystalline CoOx·MgO and VOx·MgO catalysts. J Solgel Sci Technol 68:423–428. https://doi.org/10.1007/s10971-013-3012-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Characterization of the samples was performed using the equipment of the Center of Collective Use “National Center of Catalysts Research”.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation [Project No. AAAA-A21-121011390054-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey A. Vedyagin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 386 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veselov, G.B., Stoyanovskii, V.O., Cherepanova, S.V. et al. Sol–gel prepared Co–Mg–O oxide systems: redox behavior, thermal stability and catalytic performance in CO oxidation. Reac Kinet Mech Cat 136, 233–250 (2023). https://doi.org/10.1007/s11144-022-02336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02336-1

Keywords

Navigation