Skip to main content
Log in

Removal of an anti-inflammatory drug using ZnO-supported coffee waste under UV irradiation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Coffee wastes doped with ZnO nanoparticles were applied to eliminate ibuprofen (Ib) under UV irradiations. Moreover, the influence of different parameters on photo-degradation of Ib, in water solution, was studied (it means: the initial pH of Ib solution, the quantum of CA-ZnO, the Ib concentration). The photocatalytic treatment of ibuprofen was monitored using HPLC and UV-Vis spectrophotometry. Hence, the kinetic study of this photodegradation has been performed by applying the method described by Gabor Lente. Therefore, a good ibuprofen elimination efficiency (90%) has been observed under UV254nm irradiations for 90 min using 20 mg/L of pollutant and 0.25 g/L of photocatalyst. Knowing that these results have been obtained in acidic medium; in the range of pH = 4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Sharmeen A, Tushar KS (2018) A review on heavy metal Ions and dye adsorption from water by agricultural solid waste adsorbents. Water Air Soil Pollut 229(7):225

    Article  Google Scholar 

  2. Sufia H, Leonardo G, Jean-Philippe C (2021) Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: a review. J Hazard Mat 403:124041

    Article  Google Scholar 

  3. Rabiee N, Fatahi Y, Asadnia M, Daneshgare H, Kianie M, Ghadirie AM, Atarodf M, Mashhadzadehg AH, Akhavana O, Bagherzadehe M, Limah EC, Saebi MR (2022) Green porous benzamide-like nanomembranes for hazardous cations detection, separation, and concentration adjustment. J Hazard Mat 423:127130

    Article  CAS  Google Scholar 

  4. Marco M, Stefano B, Khalil H, Claudio M, Davide V (2019) Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Envir Res 179:108750

    Article  Google Scholar 

  5. Ebrahimi M, Akhavan O (2022) Nanomaterials for photocatalytic degradations of analgesic, mucolytic and anti-biotic/viral/inflammatory drugs widely used in controlling SARS-CoV-2. Catal 12(6):667

    Article  CAS  Google Scholar 

  6. Lee CM, Palaniandy P, Dahlan I (2017) Pharmaceutical residues in aquatic environment and water remediation by TiO2 heterogeneous photocatalysis: a review. Environ Earth Sci 76:611

    Article  Google Scholar 

  7. Fan D, Peidong L, Junbo Z, Xiaoying L, Yuxin Z, Wanglai C, Hongwei H (2016) Simultaneous Pd2+ doping and Pd metal deposition on (BiO)2 CO3 microspheres for enhanced and stable visible light photocatalysis. App Catal A: General 510:161–170

    Article  Google Scholar 

  8. Zhong L (2004) Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Mat 16:R829–R858

    Article  Google Scholar 

  9. Candido JP, Andrade SJ, Fonseca AL, Silva FS, Silva MRA, Kondo MM (2016) Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions. Environ Sci Pollut Res 23:19911–19920

    Article  CAS  Google Scholar 

  10. Allou NB, Saikia P, Borah A, Goswamee RL (2017) Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects. Coll Poly Sci 295:725–747

    Article  CAS  Google Scholar 

  11. Li X, Zhang H, Ma F, Cheng S, Shen Z, Zhang J, Min J, Wang Y, Liu G, Yao H (2021) Electro-catazone treatment of ozone-resistant drug ibuprofen: interfacial reaction kinetics, influencing mechanisms, and degradation sites. J Hazard Mat Adv 4:100023

    CAS  Google Scholar 

  12. Iovino P, Chianese S, Canzano S, Prisciandaro M, Musmarra D (2016) Degradation of ibuprofen in aqueous solution with UV light: the effect of reactor volume and pH. Water Air Soil Pollut 227(6):194

    Article  Google Scholar 

  13. Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890

    Article  CAS  PubMed  Google Scholar 

  14. Martinez CLM, Saari J, Melo Y, Cardoso M, Matheus de Almeida G, Vakkilainen E (2021) Evaluation of thermochemical routes for the valorization of solid coffee residues to produce biofuels: a Brazilian case. Renew Sust Ener Rev 137:110585

    Article  Google Scholar 

  15. Naganathan KK, Faizal ANM, Zaini MAA, Ali A (2021) Adsorptive removal of bisphenol a from aqueous solution using activated carbon from coffee residue. J Mat Tod: Proceed 47(6):1307–1312

    CAS  Google Scholar 

  16. Woldesenbet AG, Woldeyes B, Chandravanshi BS (2015) Wet coffee processing waste management practice in Ethiopia. Asia J of Sci Tech 6(5):1467–1471

    Google Scholar 

  17. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotech Lett 31:1315–1319

    Article  CAS  Google Scholar 

  18. Penaloza W, Molina MR, Brenes RG, Bressani R (1985) Solid-state fermentation: an alternative to improve the nutritive value of coffee pulp. Appl Environ Microbiol 49(2):388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaffour H, Mokhtari M (2016) Photocatalytic degradation of 4-nitrophenol using TiO2 /Fe2O3 andTiO2/Fe2O3-supported bentonite as heterogeneous catalysts. Res Chem Intermed 42:6025–6038

    Article  CAS  Google Scholar 

  20. Tafreshia N, Sharifniab S, Dehaghi SM (2017) Box-Behnken experimental design foroptimization of ammonia photocatalyticdegradation by ZnO/Oak charcoal composite. Proc Saf Environ Prot 106:203–210

    Article  Google Scholar 

  21. De Brites-Nóbrega FF, Polo ANB, Benedetti AM, Leão MMD, Slusarski-Santana V, Fernandes-Machado NRC (2013) Evaluation of photocatalytic activities of supported catalysts on NaX zeolite or activated charcoal. J Hazard Mater 263:61–66

    Article  PubMed  Google Scholar 

  22. Wang X, Wu Z, Wang Y, Wang W, Wang X, Bu Y, Zhao J (2013) Adsorption–photodegradation of humic acid in water by using ZnO coupled TiO2/bamboo charcoal under visible light irradiation. J Hazard Mater 262:16–24

    Article  CAS  PubMed  Google Scholar 

  23. Verbraeken MC, Brandani S (2020) A priori predictions of type I and type V isotherms by the rigid adsorbent lattice fluid. Adsorp 26(4):989–1000

    Article  CAS  Google Scholar 

  24. Shen F, Cao N, Li H, Xie S (2022) Structure characterization of interior invisible single grain boundary by nanorobot pick-and-place grain in bulk ZnO under SEM. Mater Let 324:132777

    Article  CAS  Google Scholar 

  25. Narin P, Kutlu-Narin E, Kayral S, Tulek R, Gokden S, Teke A, Lisesivdin SB (2022) Morphological and optical characterizations of different ZnO nanostructures grown by mist-CVD. J Lumin 251:119158

    Article  CAS  Google Scholar 

  26. Moradi O, Pudineh A, Sedaghat S (2022) Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem Toxicol 169:113412

    Article  CAS  PubMed  Google Scholar 

  27. Benbachir H, Gaffour H, Mokhtari M (2017) Photodegradation of 2,4,6-trichlorophenol using natural hematite modified with chloride of zirconium oxide. Reac Kinet Mech Cat 122:635–653

    Article  CAS  Google Scholar 

  28. Guettaia D, Mokhtari M, Hihn J-Y, Stortz Y, Franchi M, Euvrard M (2017) Sonochemical and photochemical elimination of ibuprofen in aqueous solution. J Mater Environ Sci 8(9):3151–3161

    CAS  Google Scholar 

  29. Saritha P, Raj DSS, Aparna C, Laxmi PNV, Himabindu V, Anjaneyulu Y (2009) Degradative oxidation of 2,4,6 trichlorophenol using advanced oxidation processes-a comparative study. Water Air Soil Pollut 200(1–4):169–179

    Article  CAS  Google Scholar 

  30. Rengaraj S, Li XZ (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2, 4, 6-trichlorophenol in aqueous suspension. J Mol Catal A 243:60–67

    Article  CAS  Google Scholar 

  31. Lente G (2015) Solving rate equations. Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer International Publishing, Cham, pp 21–59

    Google Scholar 

  32. Benomara A, Guenfoud F, Mokhtari M (2019) Removal of methyl violet 2B by FePO4 as photocatalyst. React Kinet Mech Catal 127:1087–1099

    Article  CAS  Google Scholar 

  33. Benomara A, Guenfoud F, Mokhtari M, Boudjemaa A (2021) Sonolytic, sonocatalytic and sonophotocatalytic degradation of a methyl violet 2B using iron-based catalyst. React Kinet Mech Catal 132:513–528

    Article  CAS  Google Scholar 

  34. Li Z, Wang J, Gu C, Guo Y, Wu S (2022) Marine bacteria-mediated abiotic-biotic coupling degradation mechanism of ibuprofen. J Hazard Mater 435:128960

    Article  CAS  PubMed  Google Scholar 

  35. Yao M, Duan L, Song Y, Hermanowicz SW (2021) Degradation mechanism of Ibuprofen via a forward osmosis membrane bioreactor. Biores Technol 321:124448

    Article  CAS  Google Scholar 

  36. Murdoch RW, Hay AG (2005) Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microb 71(10):6121–6125

    Article  CAS  Google Scholar 

  37. Jimenez-Salcedo M, Monge M, Tena MT (2019) Photocatalytic degradation of ibuprofen in water using TiO2/UV and g-C3N4/visible light: Study of intermediate degradation products by liquid chromatography coupled to high-resolution mass spectrometry. Chemos 215:605–618

    Article  CAS  Google Scholar 

  38. Merkus VI, Sommer C, Smollich E, Sures B, Schmidt TC (2022) Acute ecotoxicological effects on daphnids and green algae caused by the ozonation of ibuprofen. Sci Total Environ 847:157611

    Article  CAS  PubMed  Google Scholar 

  39. Lin L, Jiang W, Bechelany M, Nasr M, Jarvis J, Schaub T, Sapkota RR, Miele P, Wang H, Xu P (2019) Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: degradation products and mechanisms. J Chemosp 220:921–929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafida Gaffour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaffour, H., Guettaia, D., Benomara, A. et al. Removal of an anti-inflammatory drug using ZnO-supported coffee waste under UV irradiation. Reac Kinet Mech Cat 135, 3343–3357 (2022). https://doi.org/10.1007/s11144-022-02325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02325-4

Keywords

Navigation