Skip to main content
Log in

Degradative Oxidation of 2,4,6 Trichlorophenol Using Advanced Oxidation Processes – A Comparative Study

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

In the present study, a comparative assessment of 2,4,6-T (2,4,6-Trichlorophenol) degradation by different AOPs (Advanced Oxidation Processes – UV, UV/ H2O2, Fenton, UV/Fenton and UV/TiO2) in the laboratory scale is performed. The effects of different reactant concentrations and pH are assessed. 2,4,6-T removal, Total Organic Carbon mineralization (TOC) and dechlorination are monitored. Of all the AOPs, UV/Fenton process is more effective in degrading 2,4,6-T. The optimum conditions obtained for the best degradation with UV/Fenton are: pH = 3, Fe+2 concentration of about 5 ppm, and peroxide concentration of 100 ppm for an initial 100 ppm of 2,4,6 T concentration at room temperature. In these conditions, a pseudo first-order rate constant is evaluated. The degradation rate of 2,4,6 T followed the order:

$$ {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{Feton}}}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}}} \right. \kern-\nulldelimiterspace} {{\text{TiO}}_{\text{2}} > {{{\text{UV}}} \mathord{\left/ {\vphantom {{{\text{UV}}} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}} \right. \kern-\nulldelimiterspace} {{\text{H}}_{\text{2}} {\text{O}}_{\text{2}} > {\text{Feton}}}}}} > {\text{UV}} $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abe, K., & Tanaka, K. (1997). Fe3+ and UV-enhanced ozonation of chlorophenolic compounds in aqueous medium. Chemosphere, 35, 2837–2847. doi:10.1016/S0045–6535(97)00344–5.

    Article  CAS  Google Scholar 

  • Alaton, I. A., & Balcioglu, I. A. (2001). Photochemical and heterogeneous photocatalytic degradation of waste vinylsulphone dyes: a case study with hydrolysed reactive Black 5. Journal of Photochemistry and Photobiology A Chemistry, 141, 247–254. doi:10.1016/S1010–6030(01)00440–3.

    Article  CAS  Google Scholar 

  • Alaton, I. A., Balcioglu, I. A., & Bahnemann, D. W. (2002). Advanced oxidation of a reactive dye bath effluent: comparison of O3, H2O2/UV-C and TiO2/UV-A processes. Water Research, 36, 1143–1154. doi:10.1016/S0043–1354(01)00335–9.

    Article  CAS  Google Scholar 

  • Aleboyeh, A., Moussa, Y., & Aleboyeh, H. (2005). Kinetics of oxidative decolourisation of Acid Orange 7 in water by ultraviolet radiation in the presence of hydrogen peroxide. Sep. Pur. Technol., 43, 143–148. doi:10.1016/j.seppur.2004.10.014.

    Article  CAS  Google Scholar 

  • Al Momani, F., Sans, C., & Esplugas, S. (2004). A comparative study of the advanced oxidation of 2,4-dichlorophenol. Journal of Hazardous Materials B, 107, 123–129. doi:10.1016/j.jhazmat.2003.11.015.

    Article  CAS  Google Scholar 

  • Alnaizy, R., & Akgerman, A. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4, 233–244. doi:10.1016/S1093–0191(00)00024–1.

    Article  Google Scholar 

  • Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53, 51–59. doi:10.1016/S0920–5861(99)00102–9.

    Article  CAS  Google Scholar 

  • Annachhatre, A. P., & Gheewala, S. H. (1996). Biodegradation of chlorinated phenolic compounds. Biotechnology Advances, 14, 35–56. doi:10.1016/0734–9750(96)00002-X.

    Article  CAS  Google Scholar 

  • Auguliaro, V., Palmisano, L., & Schiavello, M. (1991). Photon absorption by aqueous TiO2 dispersion container in a stirred photo reactor. AIChE, 37, 1096–1100. doi:10.1002/aic.690370714.

    Article  Google Scholar 

  • Bali, U., Catalkaya, E., & Sengul, F. (2003). Photochemical degradation and mineralization of phenol: a Comparative study. J. Environmental Science and Health-Part A, 38, 2259–2275. doi:10.1081/ESE-120023373.

    Article  CAS  Google Scholar 

  • Bali, U., Catalkaya, E., & Sengul, F. (2004). Photodegradation of Reactive Black 5, Direct Red 28 and Direct Yellow 12 using UV, UV/H2O2 and UV/H2O2/Fe2+: A comparative study. J. Hazard. Mater. B, 114, 159–166. doi:10.1016/j.jhazmat.2004.08.013.

    Article  CAS  Google Scholar 

  • Beltran, F. J., Ovejero, G., & Rivers, J. (1996). Oxidation of polynuclear aromatic hydrocarbon in water.3. UV radiation combined with hydrogen peroxide. Industrial & Engineering Chemistry Research, 35, 883–889. doi:10.1021/ie950363l.

    Article  CAS  Google Scholar 

  • Benitez, J. F., Heredia, J. B., Acero, J. L., & Rubio, F. J. (1999). Chemical decomposition of 2,4,6-trichlorophenol by ozone, Fenton’s reagent, and UV radiation. Industrial & Engineering Chemistry Research, 38, 1341–1349. doi:10.1021/ie980441f.

    Article  CAS  Google Scholar 

  • Benitez, J. F., Heredia, J. B., Acero, J. L., & Rubio, F. J. (2000). Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere, 41, 1271–1277. doi:10.1016/S0045–6535(99)00536–6.

    Article  CAS  Google Scholar 

  • Czaplicka, M. (2006). Photo-degradation of chlorophenols in the aqueous solution. Journal of Hazardous Materials, 134, 45–59. doi:10.1016/j.jhazmat.2005.10.039.

    Article  CAS  Google Scholar 

  • De, A. K., Chaudhuri, B., Bhattacharjee, S., & Dutta, B. K. (1999). Estimation of OH radical reaction rate constants for phenol and chlorinated phenols using UV/H2O2 photo-oxidation. Journal of Hazardous Materials, 64, 91–104. doi:10.1016/S0304–3894(98)00225–8.

    Article  CAS  Google Scholar 

  • Federico, M., Fernando, V., & Natalia, V. (2006). Changes in solution color during phenol oxidation by Fenton reagent. Environ. Sci. and Technol. A, 40, 5538–5543. doi:10.1021/es060866q.

    Article  CAS  Google Scholar 

  • Galindo, C., Jacques, P., & Kalt, A. (2001). Photochemical and photocatalytic degradation of an indigoid dye: A case study of acid blue 74 (AB74). Journal of Photochemistry and Photobiology A Chemistry, 141, 47–56. doi:10.1016/S1010–6030(01)00435-X.

    Article  CAS  Google Scholar 

  • Ghaly, M. Y., Hartel, G., Mayer, R., & Haseneder, R. (2001). Photochemical oxidation of p-chlorophenol by UV/H2O2 and photofenton process-A comparative study. Water Management, 21, 41–47.

    CAS  Google Scholar 

  • Graham, N., Chu, W., & Lau, C. (2003). Observation of 2,4,6-trichlorophenol degradation by ozone. Chemosphere, 51, 237–243. doi:10.1016/S0045–6535(02)00815–9.

    Article  CAS  Google Scholar 

  • Hugul, M., Apak, R., & Demirci, S. (2000). Modeling the kinetics of UV hydrogen peroxide oxidation of some mono-, di-, and trichlorophenols. Journal of Hazardous Materials B, 77, 193–208. doi:10.1016/S0304–3894(00)00246–6.

    Article  CAS  Google Scholar 

  • Hugul, M., Ercag, E., & Apak, R. (2002). Kinetic studies on UV-Photodegradation of some chlorophenols using TiO2 catalyst. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 37, 365–383.

    Google Scholar 

  • Kang, N., Soo Lee, D., & Yoon, J. (2002). Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere, 47, 915–924. doi:10.1016/S0045–6535(02)00067-X.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2003). Degradation of 2-Chlorophenol by Fenton and Photo-Fenton Processes—A Comparative Study. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 38, 1215–1231. doi:10.1081/ESE-120021121.

    CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55, 1235–1243. doi:10.1016/j.chemosphere.2003.12.022.

    Article  CAS  Google Scholar 

  • Kavitha, V., & Palanivelu, K. (2005). Degradation of nitrophenols by Fenton and photo-Fenton processes. Journal of Photochemistry and Photobiology A Chemistry, 170, 83–95. doi:10.1016/j.jphotochem.2004.08.003.

    Article  CAS  Google Scholar 

  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93, 671–698. doi:10.1021/cr00018a003.

    Article  CAS  Google Scholar 

  • Mandal, A., Ojha, K., Asim De, K., & Bhattacharjee, S. (2004). Chemical Engineering Journal, 102, 203–208.

    Google Scholar 

  • Marshall, W. D., Kubatova, A., Lagadec, A. J. M., Miller, D. M., & Hawthorne, S. B. (2002). Zero-valent metal accelerator for the dechlorination of pentachlorophenol (PCP) in subcritical water. Green Chemistry, 4, 17–23. doi:10.1039/b108337f.

    Article  CAS  Google Scholar 

  • Meric, S., Kaptan, D., & Olmez, T. (2004). Colour and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process. Chemosphere, 54, 435–441. doi:10.1016/j.chemosphere.2003.08.010.

    Article  CAS  Google Scholar 

  • Neppolian, B., Kanel, S. R., Choi, H. C., Shankar, M. V., Arbindoo, B., & Murugesan, V. (2003). Photo catalytic degradation of reactive yellow 17 dye in aqueous solution in the presence of TiO2 with cement binder. International journal of Photoenergy, 5, 45–49.

    Article  CAS  Google Scholar 

  • Pera-Titus, M., Garcia-Molina, V., Banos, M. A., Gimenez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B Environmental, 47, 219–256. doi:10.1016/j.apcatb.2003.09.010.

    Article  CAS  Google Scholar 

  • Priya, M. H., & Madras, G. (2005). Kinetics of photocatalytic degradation of phenols with multiple substituent groups. Journal of Photochemistry and Photobiology A Chemistry, 179, 256–262. doi:10.1016/j.jphotochem.2005.08.022.

    Article  CAS  Google Scholar 

  • Rao, N. N., Dubey, A. K., Mohanty, S., Khare, P., Jain, R., & Kaul, S. N. (2003). Photo catalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability. Journal of Hazardous Materials B, 101, 301–314. doi:10.1016/S0304–3894(03)00180–8.

    Article  CAS  Google Scholar 

  • Rideh, L., Wehrer, A., Ronze, D., & Zoulalian, A. (1997). Photocatalytic degradation of 2-chlorophenol in TiO2 aqueous suspension: modeling of reaction rate. Industrial & Engineering Chemistry Research, 36, 4712–4718. doi:10.1021/ie970100m.

    Article  CAS  Google Scholar 

  • Schrank, S. G., Jose, H. J., Moreira, R. F. P. M., & Schroder, H. Fr. (2005). Applicability of Fenton and H2O2/UV reactions in the treatment of tannery wastewaters. Chemosphere, 60, 644–655. doi:10.1016/j.chemosphere.2005.01.033.

    Article  CAS  Google Scholar 

  • Serpone, N., Texier, I., Emeline, A. V., Pichat, P., Hidaka, H., & Zhaoe, J. (2000). Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers. Journal of Photochemistry and Photobiology A Chemistry, 136, 145–155. doi:10.1016/S1010–6030(00)00348–8.

    Article  CAS  Google Scholar 

  • Skurlatov, Y. I., Ernestova, L. S., Vichutinskaya, E. V., Samsonov, D. P., Pervunina, R. I., Semenova, I. V., & Shvydky, V. O. (1998). Acta Hydrochimica et Hydrobiologica, 26, 31–35. doi:10.1002/(SICI)1521–401X(199801)26:1<31::AID-AHEH31>3.0.CO;2–2

    Google Scholar 

  • Song-hu, Y., & Xiao-hua, L. (2005). Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. Journal of Hazardous Materials, B118, 85–92. doi:10.1016/j.jhazmat.2004.08.025.

    Article  CAS  Google Scholar 

  • Stefan, M. I., Hoy, A. R., & Bolton, J. R. (1996). Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environmental Science & Technology, 30, 2382–2390. doi:10.1021/es950866i.

    Article  CAS  Google Scholar 

  • Trapido, M., & Kallas, J. (2000). Advanced oxidation processes for the degradation and detoxification of 4- nitrophenol. Environmental Technology, 21, 799–808.

    Article  CAS  Google Scholar 

  • Walter, Z. T., & Huang, C. P. (1995). The effect of chlorine position of chlorinated phenols on their dechlorination kinetics by Fenton's reagent. Waste Management (New York, N.Y.), 15, 615–622. doi:10.1016/0956–053X(96)00022–0.

    Google Scholar 

  • Yamila, A., Liendo, F., & Nunez, O. (2003). On the Fenton degradation mechan ism-The role of oxalic acid. ARKIVOC, x, 538–549.

    Google Scholar 

  • Zappi, M., Teeter, C., Fleming, E., & Francingues, N. (1991). Treatability of Nine Avenue Superfund Site Groundwater, Report # MP-EL-91–8, US Army Engineers Waterways Experiment Station.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Himabindu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saritha, P., Raj, D.S.S., Aparna, C. et al. Degradative Oxidation of 2,4,6 Trichlorophenol Using Advanced Oxidation Processes – A Comparative Study. Water Air Soil Pollut 200, 169–179 (2009). https://doi.org/10.1007/s11270-008-9901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9901-y

Keywords

Navigation