Skip to main content
Log in

Relevance of Anethum graveolens to remove Rhodamine B in aqueous solution: characterization, kinetic and isotherm study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the present study, we reported the feasibility to exploit the low cost, and renewable biomass Anethum graveolens (AG) as adsorbent to remove Rhodamine B (RhB) dye from aqueous solutions. The capacity of A. graveolens to absorb the dye was investigated by using batch adsorption procedure with examination of different operational factors such as pH (2–10), stirring speed (100–400 ppm), adsorbent concentration (0.5–5 mg L−1) and the initial dye concentration (10–50 mg L−1). The RhB removal efficiency increased from ~ 63 to 95%, depending on the operating conditions; the optimal conditions are 300 rpm for stirring speed, 6 and 7 for pH, 3 g L−1 for biomass dosage and 10 mg L−1 for dye’s concentration. In order to estimate the equilibrium parameters, the experimental data were analyzed using the nonlinear forms of different kinetic models (pseudo-first order kinetic model, pseudo-second order kinetic model, Elovich and intra-particle diffusion models), also different isotherm models (Langmuir, Freundlich, Dubinine and Temkin models) were studied. The results indicated that the RhB sorption follows the pseudo second order model; under the optimum conditions, the maximum biosorption capacity (qmax) of AG was (52–56 mg g−1). Langmuir and Freundlich model could fit the data better than Dubinin–Radushkevich and Temkin models. Scanning electron microscopy (SEM–EDX), X-ray fluorescence, attenuated total reflectance and X-ray diffraction analyses have been used to evaluate the morphological changes and the mechanisms of dye interaction with biomass. The chemical modification of functional groups of biomass institute the major contribution of hydroxyl groups for effective dye decolorization through complexation and electrostatic interactions due to the interactions of dye molecules of RhB with the functional groups, of adsorbent such as OH, COOH, CN, and CH groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harouna M, Baiboussa G, Abia D, Tcheka C, Loura B, Ketcha JM, Nistor ID (2015) Adsorption of Rhodamine B in aqueous solution by activated carbon from the see husks of moringaoleifera. Int J Eng Res Sci Technol 4(1):70–79

    Google Scholar 

  2. Mahmoud MS, Farah JY, Farrag TE (2013) Enhanced removal of methylene blue by EC using iron electrodes. Egypt J Pet 22(1):211–216

    Article  Google Scholar 

  3. Deng S (2006) Sorbent technology. Encycl Chem Process. https://doi.org/10.1081/E-ECHP-1200079632825-2845

    Article  Google Scholar 

  4. Chen Y, Yu M (2011) Rhodamine B staining foods on the human body and test. Friend Sci Amateurs 9:153–157

    Google Scholar 

  5. International Agency for Research on Cancer (IARC) (1978) Monographs on the evaluation of carcinogenic risk of chemicals to man, volume 16. Some aromatic amines and related nitro compounds. World Health Organization: Lyon

  6. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, Lister TA, Bloomfield CD (1997) The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the clinica advisory committee meeting, Airlie House, Virginia

  7. Mondal S (2008) Methods of dye removal from dye house effluents: an overview. Environ Eng Sci 25:383–396

    Article  CAS  Google Scholar 

  8. Dhas PGTN, Gulyas H, Otterpohl R (2015) Impact of powdered activated carbon and anion exchange resin on photocatalytic treatment of textile wastewater. J Environ Prot 6:191–203

    Article  CAS  Google Scholar 

  9. Inyinbor AA, Adekola FA, Olatunji GA (2015) Adsorption of Rhodamine B dye from aqueous solution on irvingiagabonensis biomass: kinetics and thermodynamics studies. S Afr J Chem 68:115–125

    Article  Google Scholar 

  10. Hashem A, El-Khiraigy K (2013) Bioadsorption of Pb (II) onto Anethum graveolens from contaminated wastewater: equilibrium and kinetic studies. J Environ Prot 4:108–119

    Article  Google Scholar 

  11. Imam SS, Babamale HF (2020) Short review on the removal of Rhodamine B dye using agricultural waste-based adsorbents. Asian J Chem Sci 7(1):25–37

    Article  Google Scholar 

  12. Ju DJ, Byun IG, Park JJ, Lee CH, Ahn GH, Park TJ (2008) Biosorption of a reactive dye (Rhodamine B) from an aqueous solution using dried biomass of activated sludge. Biores Technol 99:7971–7975

    Article  CAS  Google Scholar 

  13. Sureshkumar MV, Namasivayam C (2008) Adsorption behavior of Direct Red 12B and Rhodamine B from water onto surfactant-modified coconut coir pith. Colloids Surf A 317:277–283

    Article  CAS  Google Scholar 

  14. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M (2019) Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: response surface methodology, kinetics and isotherm studies. PLoS ONE 14(5):e0216878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ilayarajaa M, Krishnanb NP, Sayee Kannan R (2013) Adsorption of Rhodamine-B and Congo red dye from aqueous solution using activated carbon: kinetics, isotherms, and thermodynamics. IOSR-JESTFT 5:79–89

    Article  Google Scholar 

  16. Shen K, Gondal MA (2017) Removal of hazardous Rhodamine dye from water by adsorption onto exhausted coffee ground. J Saudi Chem Soc 21:S21-27

    Article  Google Scholar 

  17. Osmari TA, Gallon R, Schwaab M, Barbosa-Coutinho E, Severo JB Jr, Pinto JC (2013) Statistical analysis of linear and non-linear regression for the estimation of adsorption isotherm parameters. Adsorpt Sci Technol 31(5):433

    Article  CAS  Google Scholar 

  18. Kumar KV, Sivanesan S (2006) Isotherm parameters for basic dyes onto activated carbon: comparison of linear and nonlinear method. J Hazard Mater B129:147–215

    Article  Google Scholar 

  19. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

  20. Chen X (2015) Modeling of experimental adsorption isotherm data. Information 6:14–22

    Article  Google Scholar 

  21. Benderdouche N, Bestani B, Benderdouch N (2018) The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust-based activated carbon. J Mater Environ Sci 9(4):1110–1118

    Google Scholar 

  22. López-Luna J, Ramírez-Montes LE, Martinez-Vargas S, Martínez AI, Mijangos-Ricardez OF, González-Chávez MC, González RC, Solís-Domínguez FA, Cuevas-Díaz MC, Vázquez-Hipólito V (2019) Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Appl Sci 1(8):950

    Article  Google Scholar 

  23. Lin J, Wang L (2009) Comparison between linear and nonlinear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3(3):320–324

    Article  CAS  Google Scholar 

  24. Pereira PM, Ferreira BF, Oliveira NP, Nassar EJ, Ciuffi KJ, Vicente MA, Trujillano R, Rives V, Gil A, Korili S, de Faria EH (2018) Synthesis of zeolite A from metakaolin and its application in the adsorption of cationic dyes. Appl Sci 8(4):608

    Article  Google Scholar 

  25. Bellaloui M, Metouchi A, Foukrache A, Larabi S, Semaoune F (2017) Retention of a heavy metal by marl collected from aquifer substratum. Arab J Geosci 10(19):425

    Article  Google Scholar 

  26. An B (2020) Cu(II) and As(V) adsorption kinetic characteristic of the multifunctional Amino Groups in Chitosan. Processes 8:1194

    Article  CAS  Google Scholar 

  27. Wu FC, Liu BL, Wu KT, Tseng RL (2010) A new linear form analysis of Redlich-Peterson isotherm equation for the adsorptions of dyes. Chem Eng J 162:21–27

    Article  CAS  Google Scholar 

  28. Jasper EE, Ajibola VO, Onwuka JC (2020) Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl Water Sci 10:132

    Article  CAS  Google Scholar 

  29. Jana S, Shekhawat GS (2010) Anethum graveolens An Indian traditional medicinal herb and spice. Pharmacogn Rev 4(8):179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Belurkar R (2021) Synthesis and characterization of lanthanum nanoparticles by Anethum graveolens (Dill) leaf extract. Orient J Chem 37(5):1205–1209

    Article  CAS  Google Scholar 

  31. Reddy MCS, Sivaramakrishnab L, Reddy AV (2012) The use of an agricultural waste material, jujuba seeds, for the removal of anionic dye (Congo red) from aqueous medium. J Hazard Mater 203–204:118–127

    Article  PubMed  Google Scholar 

  32. Sahoo TR, Prelot B (2020)Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology. Nanomaterials for the Detection and Removal of Wastewater Pollutants, Micro and Nano Technologies, 161–222

  33. Lagergren S (1898) Zurtheorie der sogenannten adsorption gelosterstoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  34. Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  35. Cheung CW, Porter JF, Mckay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612

    Article  CAS  PubMed  Google Scholar 

  36. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civil Eng 8:31–60

    Article  Google Scholar 

  37. Kannan K, Sundaram M (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons, a comparative study. Dyes Pigm 51:25–40

    Article  CAS  Google Scholar 

  38. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  39. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc 38(11):2221–2295

    Article  CAS  Google Scholar 

  40. Webber TW, Chakkravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AlChE J 20:228–238

    Article  Google Scholar 

  41. Chaleshtori AN, Meghadddam FM, Sadeghi M, Rahimi R, Hemati S, Ahmadi A (2017) Removal of Acid Red 18 (AzoDye) from aqueous solution by adsorption onto activated charcoal prepared from almond shell. J Environ Sci Manag 20–2:9–16

    Article  Google Scholar 

  42. Ajenifuja E, Ajao JA, EAjayi OB (2017) Adsorption isotherm studies of Cu (II) and Co (II) in high concentration aqueous solutions on photocatalytically modified diatomaceous ceramic adsorbents. Appl Water Sci 7:3793–3801

    Article  CAS  Google Scholar 

  43. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem 10:20. https://doi.org/10.1155/2017/3039817

    Article  CAS  Google Scholar 

  44. Labied R, Benturki O, Hamitouche A, Donnot A (2018) Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study. Adsorpt Sci Technol 36(3–4):1066–1099

    Article  CAS  Google Scholar 

  45. Edet UA, Kinetics IAO (2020) Isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes 8:665

    Article  CAS  Google Scholar 

  46. Al-Harby NF, Albahly EF, Mohamed NA (2022) Synthesis and characterization of novel uracil-modified chitosan as a promising adsorbent for efficient removal of Congo Red Dye. Polymers 14(2):271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Amrahar O, Nassali H, Elyoubi MS (2015) Application of nonlinear regression analysis to select the optimum absorption isotherm for Methylene Blue adsorption onto Natural Illitic Clay. Bull Soc R Sci Liège 84:116–130

    Google Scholar 

  48. El Haddad M, Regti A, Slimani R, Lazar S (2014) Assessment of the biosorption kinetic and thermodynamic for the removal of safranin dye from aqueous solutions using calcined mussel shells. J Ind Eng Chem 20:717–724

    Article  Google Scholar 

  49. Ghaedi M, Hajati S, Barazesh B, Karimi F, Ghezelbash G (2013) Equilibrium, kinetic and isotherm of some metal ion biosorption. J Ind Eng Chem 19(3):987–992

    Article  CAS  Google Scholar 

  50. Tripathi N (2013) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. IOSR J Appl Chem 5(3):91–108

    Article  Google Scholar 

  51. Gad HMH, El-Sayed A (2009) Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. J Hazard Mater 168:1070–1081

    Article  CAS  PubMed  Google Scholar 

  52. Guo Y, Zao J, Zhang H, Yang S, Qi J, Wang Z, Xu H (2005) Use of rice husk-based porous carbon for adsorption of Rhodamine B from aqueous solutions. Dyes Pigm 66(2):123–128

    Article  CAS  Google Scholar 

  53. Kuśmierek K, Świątkowski A (2015) The influence of different agitation technique on the adsorption kinetics of 4-chlorophenol on granular activated carbon. Reac Kinet Mech Cat 116:261–271

    Article  Google Scholar 

  54. Sen TK, Afroze S, Ang HM (2011) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus Radiata. Water Air Soil Pollut 218:499–515

    Article  CAS  Google Scholar 

  55. Purkait MK, Maiti A, Das Gupta S, De S (2007) Removal of Congo red using activated carbon and its regeneration. J Hazard Mater 145:287–295

    Article  CAS  PubMed  Google Scholar 

  56. Foo KY, Hameed BH (2011) Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem Eng J 173:385–390

    Article  CAS  Google Scholar 

  57. Sumanjit K, Walia TPS, Kansal I (2008) Removal of Rhodamine-B by adsorption on walnut shell charcoal. J Surf Sci Technol 24(3):179–193

    CAS  Google Scholar 

  58. Gupta H, Gogate PR (2016) Intensified removal of copper from waste water using activated watermelon based adsorbent in the presence of ultrasound. Ultrason Sonochem 30:113–122

    Article  CAS  PubMed  Google Scholar 

  59. Markandeya SP, Shukla GC, Kisku (2015) Linear and nonlinear kinetic modeling for adsorption of disperse dye in batch process. Res J Environ Toxicol 9:320–331

    Article  CAS  Google Scholar 

  60. Hamitouche A, Haffas M, Boudjemaa A, Benammar S, Sehailia M, Bachari K (2017) Efficient biosorption of methylene blue, malachite green and methyl violet organic pollutants on biomass derived from Anethum graveolens, an eco-benigen approach for wastewater treatment. Desalin Water Treat 75:225–236

    Article  CAS  Google Scholar 

  61. Pholosi A, Naidoo Eliazer B, Ofomaja AE (2020) Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study. S Afr J Chem Eng 32:39–55

    Google Scholar 

  62. Smaranda Betianu C, Cozma P, Rosca M, Comănit UED, Mămăligă I, Gavrilescu M (2020) Sorption of organic pollutants onto soils: surface diffusion mechanism of Congo Red Azo Dye. Processes 8(12):1639

    Article  Google Scholar 

  63. Hameed BH (2009) Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent. J Hazard Mater 162:344–350

    Article  CAS  PubMed  Google Scholar 

  64. Behloul S, Hamitouche A, Haffas M, Boudjemaa A, Benammar S, Sehailia M, Meziane T, Bachari K (2018) Removal of methyl violet dye by a low-cost waste (Ajuga pseudo-iva): kinetic and equilibrium isotherm study. Can J Chem Eng 96:2281–2291

    Article  Google Scholar 

  65. Amrhar O, Nassali H, El YoubiM S (2015) Application of nonlinear regression analysis to select the optimum absorption isotherm for Methylene Blue adsorption onto Natural Illitic Clay. Bull Soc R Sci Liège 84:116–130

    CAS  Google Scholar 

  66. Hashem A, El-Khiraigy K (2013) Bioadsorption of Pb (II) onto Anethum graveolens from contaminated wastewater: equilibrium and kinetic studies. J Environ Prot 4:108–119

    Article  Google Scholar 

  67. Hamitouche A, Benammar S, Haffas M, Boudjemaa A, Bachari K (2015) Biosorption of methyl violet from aqueous solution using Algerian biomass. Desalin Water Treat 57(34):1–11

    Google Scholar 

  68. Swelam AA, Awad MB, Salem AMA, El-Feky AS (2016) An economically viable method for the removal of cobalt ions from aqueous solution using raw and modified rice straw. HBRC J 4(3):255–263

    Article  Google Scholar 

  69. Lv Y, Li P, Che Y, Hu C, Ran S, Shi P, Zhang W (2018) Facile preparation and characterization of nanostructured BiOI microspheres with certain adsorption-photocatalytic properties. Mater Res 21(3):e20170705

    Article  CAS  Google Scholar 

  70. Sumanjit K, Seema R, Mahajan RK (2016) Equilibrium, kinetics and thermodynamic parameters for adsorptive removal of dye Basic Blue 9 by ground nut shells and Eichhornia. Arab J Chem 9:1464-S1477

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Directorate General for Scientific Research and Technological Development DGRSDT (Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Benammar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benammar, S., Haffas, M., Hamitouche, A. et al. Relevance of Anethum graveolens to remove Rhodamine B in aqueous solution: characterization, kinetic and isotherm study. Reac Kinet Mech Cat 136, 465–490 (2023). https://doi.org/10.1007/s11144-022-02324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02324-5

Keywords

Navigation