Skip to main content
Log in

Retention of a heavy metal by marl collected from aquifer substratum

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

One of the objectives of this work is to characterize marl samples collected from the bedrock aquifer (at 30 m depth) of Wadi Al Ghoula located in Draria southwest of Algiers. The other objective is to make a kinetics study, linear and non-linear isotherm study, and mass transfer study of the adsorption of copper onto marl in aqueous solution. The fitness of kinetics and isotherm models was evaluated by using some error analysis function. One of the major results using an XRF technique is an evidence of the presence of calcite in the weight of 13.82%. The XRD patterns of these samples confirmed the presence of montmorillonite, kaolinite, illite, calcite, and quartz. On the other hand, the FTIR analysis clarified the presence of calcite. The specific surface area of 20,999 m2/g was obtained using the BET, which indicates that the material has a predominance for the mesoporous character. The instrumental neutron activation analysis (INAA), a nondestructive method, gives the elemental composition of the adsorbent. Based on the value of the coefficient of determination, the adsorption kinetics of copper in aqueous solution using marl as adsorbent follows the pseudo-second-order model. And according to the value of the coefficient of determination obtained for the two models, the intraparticle diffusion and liquid film diffusion control the process of adsorption of copper onto marl with low predominance for the second model of diffusion in the first stage of adsorption. The linear and the non-linear treatments of the two-parameter isotherm models (Langmuir, Freundlish, Temkin) show that the fitting best model of isotherm is the empirical Freundlish isotherm. For the three-parameter isotherm models (Toth, Sips, and Redlish-Peterson), the Sips model is the more accurate fitting model than the two other isotherms in the non-linear approach. Some error analysis functions are used to choose the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Atanassova I, Okazaki M (1997) Adsorption-desorption characteristics of high levels of copper in soil clay fractions. Water, air and soil pollution. 98 213-228, © 1997 Kluwer Academic Publishers. Printed in the Netherlands.

  • Atia AA (2008) Adsorption of chromate and molybdate by cetypyridinium bentonite. Appl Clay Sci 41:73-84. https://doi.org/10.1016/j.clay.2007.09.011

    Article  Google Scholar 

  • Aytas S, Yurtlu M, Donat R (2009) Adsorption characteristic of U(VI) ion onto thermally active bentonite. J Hazard Mater 172:667-674. https://doi.org/10.1016/j.jhazmat.2009.07.049

    Article  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361-377

    Article  Google Scholar 

  • Beltran JL, Pignatello JJ, Teixido M (2016) ISOT-Calc: a versatile tool for parameter estimation in sorption isotherms. Comput Geosci 94:11-17. https://doi.org/10.1016/j.cageo.2016.04.008

    Article  Google Scholar 

  • Bosch RF, Gimeno AJV, Moya MMCM (2002) FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Appl Geol Samples Talanta 58:811-821

    Google Scholar 

  • Bouhila Z, Mouzai M, Azeli T, Nedjar A, Mazouzi C, Zergoug Z, Boukhadra D, Chegrouche S, Lounici H (2015) Investigation of aerosol trace element concentrations nearby Algiers for environmental monitoring using instrumental neutron activation analysis. Atmos Res 166:49-59

    Article  Google Scholar 

  • Brown AM (2001) A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Comput Methods Prog Biomed 65:191-200

    Article  Google Scholar 

  • Camuzzi C, Polese P, Melchior A, Portanova R, Talazzi M (2003) SOLVERSTAT: a new utility for multipurpose analysis, an application to the investigation of deoxygenated Co(II) complex formation in dimethylsifxide solution. Talanta 59:67-80

    Article  Google Scholar 

  • Chen S, Shen W, Yu F, Wang H (2009) Kinetic and thermodynamic studies of adsorption of Cu2+ and Pb2+ onto amidoximated bacterial cellulose. Polym Bull 63:283-297. https://doi.org/10.1007/s00289-009-0088-1

    Article  Google Scholar 

  • Davidson CM (2013) Methods for the determination of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, environmental pollution. 22. https://doi.org/10.1007/978-94-007-4470-7_4

  • Disli E (2010) Batch and column experiments to support heavy metals (Cu, Zn and Mn) in alluvial sediments. Chin J Geochem 29:365-374. https://doi.org/10.1007/s11631-010-0468-0

    Article  Google Scholar 

  • Encyclopedia of soil science (2008) Part of the series encyclopedia of soil science series, pp 446-446. https://doi.org/10.1007/978-1-4020-3995-9_341 © Springer Science+Business Media B.V. Springer Netherlands

  • Eren E, Afsin B (2008) An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. J Hazard Mater 151:682-691

    Article  Google Scholar 

  • Farrah H, Hatton D, Pickering WF (1980) The affinity of metal ions for clay surface. Chem Geol 28:55-68

    Article  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2-9. https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  • Fredd CN, Fogler HS (1998) The kinetics of calcite dissolution in acetic acid solutions. Chem Eng Sci 53(22):3863-3874

    Article  Google Scholar 

  • Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater B 135:264-373. https://doi.org/10.1016/j.jhazmet.200511.062

    Article  Google Scholar 

  • Hamidi AA, Adlan MN, Ariffin KS (2008) Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by height quality limestone. Bioresour Technol 99:1578-1583

  • Henderson P, Pankhurst RJ (1984) Analytical chemistry. In: Henderson P (ed) Rare earth element geochemistry, volume 2. Elsevier, pp 467-499

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451-465

    Article  Google Scholar 

  • Korichi S, Elias A, Mefti A (2009) Characterization of smectite after acid activation with microwave irradiation. Appl Clay Sci 42:432-438. https://doi.org/10.1016/j.clay.2008.04.014

    Article  Google Scholar 

  • Korkut O, Sayan E, Lacin O, Bayrak B (2010) Investigation of adsorption and ultrasound assisted desorption of lead (II) and copper (II) on local bentonite: a modelling study. Desalination 259:243-248. https://doi.org/10.1016/j.desal.2010.03.045

    Article  Google Scholar 

  • Kuila U, Prasad M (2013) Specific surface area and pore-size distribution in clays and shales. Geophys Prospect 61:341-362. https://doi.org/10.1111/1365-2478.12028

    Article  Google Scholar 

  • Lim S-F, Agnes Y, Lee W (2015) Kinetic study on removal of heavy metal ions from aqueous solution by using soil. Environ Sci Pollut Res 22:10144-10158. https://doi.org/10.1007/s11356-015-4203-6

    Article  Google Scholar 

  • Lopes CB, Lito PF, Cardoso SP, Pereira E, Duarte AC, Silva CM (2012) Metal recovery, separation and/or pre-concentration. In: Inamuddin, Luqman M (ed) Ion exchange technology II: applications. pp 237-322. https://doi.org/10.1007/978-94-007-4026-6_11 © Springer Science+Business Media B. V.

  • Lyubchik S, Lygina E, Lyubchyk A, Lyubchik S, Loureiro JM, Fonseca IM, Ribeiro A B, Pinto MM, Sa Agnes M (2016) The kinetic parameters evaluation for the adsorption process at liquid-solid interface. In: Ribeiro AB, et al. (ed) Electrokinetic across disciplines and continents. pp 81-109. https://doi.org/10.1007/978-3-319-20179-5_5 © Springer International Publishing Switzerland

  • Mahtab A, Lee SS, Sang-Eun O, Mohan D, Moon d H, Lee YH, Ok YS (2013) Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ Sci Pollut Res 20:8364-8373. https://doi.org/10.1007/s11356-013-1676-z

    Article  Google Scholar 

  • Maramis V, Kurniawan A, Ayucitra A, Sunarso J, Ismadji SS (2012) Removal of copper ion from aqueous solution by adsorption using LABORATORIES-modified bentonite (organo-bentonite). Front Chem Sci Eng 6(1):58-66. https://doi.org/10.1007:s11705-011-1160-6

  • Mariangela Grassi, Gul Kaykioglu, Vincento Belgiorno, Guisy Lofrano (2012) removal of emerging contaminants from water and wastewater by adsorption process. In: Lofrano G (ed) Emerging compounds removal from wastewater. SpringBriefs in green Chemistery for Sustainability https://doi.org/10.1007/978-94-007-3916-1_2 © Grassi, Kaykioglu, Belgiorno, Lofrano

  • Menacer S, Lounis A, Guedioura B, Bayou N (2015) Uranium removal from aqueous solution by adsorption on Aleppo pine sawdust: modified by NaOH and irradiation. Desalin Water Treat. https://doi.org/10.1080/19443994.2015.1077475

  • Mohammed AS, Kapri A, Goe R (2011) Heavy metals pollution: source, impact and remedies. In: Khan MS, et al (ed) Biomanagement of metal-contaminated soils. Environ Pollut 20:1-28. https://doi.org/10.1007/978-94-007-1914-9_1

    Article  Google Scholar 

  • Mudhoo A, Garg VK, Wang S (2012) Heavy Metals: Toxicity and Removal by Biosorption In: E. Lichtfouse et al. (eds.) Environmental chemistry for a sustainable world : Volume 2: Remediation of Air and Water Pollution, pp 379-442. https://doi.org/10.1007/978-94-007-2439-6_10 © S^ringer Science+Business Media B. V.

  • Omorogie MO, Babalola JO, Unuabonah EI, Weiguo S, Gong Jian R (2016) Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste. J Saudi Chem Soc 20:49-57. https://doi.org/10.1016/j.jscs.2012.09.017

    Article  Google Scholar 

  • Preeti SN, Singh BK (2007) Instrumental characterization of clay by XRF, XRD and FTIR. Bull Mater Sci 30(3):235-238

    Article  Google Scholar 

  • Scragg JJ (2011) Electrodeposition of Metallic Precursors in: Copper zinc tin sulfide thin films for photovoltaics. Springer theses. https://doi.org/10.1007/978-3-642-22919-0_2 © Springer-Verlag Berlin Heidelberg

  • Sdiri AT, Higashi T, Jamoussi F (2014) Adsorption of copper and zinc onto natural clay single and binary systems. Int J Environ Sci Technol 11:1081-1092

    Article  Google Scholar 

  • Stefanova RY (2001) METAL REMOVAL BY THERMALLY ACTIVATED CLAY MARL. J Environ Sci Health Part A 36(3):293-306

  • Spiess Andrej-Nikolai, Neumeyer Nathalie (2010) An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a Monte Carlo approach. Spiess and Neumeyer BMC Pharmacology 10-6 http://www.biomedcentral.com/1471-2210/10/6

  • Wang L (2013) Removal of disperse red dye by bomboo-based activated carbon: optimization, kinetic and equilibrium. Environ Sci Pollut Res 20:4635-4646. https://doi.org/10.1007/s11356-012-1421-z

    Article  Google Scholar 

  • Wu K-T, Wu P-H, Wu F-C, Ru-Ling J, Ruey-Shin J (2013) A novel approach to characterizing liquid-phase adsorption on highly porous activated carbons using the Toth equation. Chem Eng J 221:373-381. https://doi.org/10.1016/j.cej.201302.012

    Article  Google Scholar 

  • Wu XL, Donglin Z, Yang ST (2011) Impact of solution chemistry conditions on the sorption behavior of Cu(II) on Lin’an montmorillonite. Desalination 269:84-91. https://doi.org/10.1016/j.desal.2010.10.046

    Article  Google Scholar 

  • Yang X, Al-Duri B (2001) Application of branched pore diffusion model in the adsorption of reactive dyes on activated carbon. Chem Eng J 83:15-23

    Article  Google Scholar 

  • Zamzow MJ, Murphy JE (1992) Removal of metal cations from water using zeolites. Sep Sci Technol 27:1969-1984. https://doi.org/10.1080/01496399208019459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Bellaloui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellaloui, M., Metouchi, A., Foukrache, A. et al. Retention of a heavy metal by marl collected from aquifer substratum. Arab J Geosci 10, 425 (2017). https://doi.org/10.1007/s12517-017-3177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-017-3177-8

Keywords

Navigation