Skip to main content
Log in

Photocatalytic oxidative degradation of methyl orange by a novel g-C3N4@ZnO based on graphene oxide composites with ternary heterojunction construction

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Photocatalyst composites of g-C3N4/ZnO/GO (graphene oxide) were successfully prepared by sol–gel method combined with thermal polycondensation. The composites were characterized by SEM, XRD, TGA, FT-IR, UV–vis and physical adsorption. The electrical properties of g-C3N4/ZnO/GO composites were characterized by open circuit potential method and AC impedance method. The degradation of methyl orange by composites was studied. The results demonstrate that composites have better photocatalytic efficiency for the degradation of methyl orange than g-C3N4. The most efficient photocatalytic degradation of methyl orange stimulated wastewater adopt that 1 g/L of composites solution, 120 min and degradation time at 35 °C with adding 120 mL/L of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wang J, Tang L, Zeng G, Deng Y, Liu Y, Wang L, Zhou Y, Guo Z, Wang J, Zhang C (2017) Atomic scale g-C3N4/Bi2WO62D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Appl Catal B Environ 209:285–294

    Article  CAS  Google Scholar 

  2. Gao Y, Zhang J, Zhang Z, Li Z, Xiong Q, Deng L, Zhou Q, Meng L, Du Y, Zuo T, Yu Y, Lan Z, Gao P (2021) Plasmon-enhanced perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2):291–297

    Article  CAS  PubMed  Google Scholar 

  3. Liu S, Hu Q, Qiu J, Wang F, Lin W, Zhu F, Wei C, Zhou N, Ouyang G (2017) Enhanced photocatalytic degradation of environmental pollutants under visible irradiation by a composite coating. Environ Sci Technol 51(9):5137–5145

    Article  CAS  PubMed  Google Scholar 

  4. Rasheed T, Bilal M, Li C, Nabeel F, Khalid M, Iqbal H (2018) Biology catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J Photochem Photobiol B 181:44–52

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Ke J, Li D, Sun H, Liang P, Duan X, Tian W, Tadé MO, Liu S, Wang S (2017) Interfaces oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl Mater Interfaces 9(13):11678–11688

    Article  CAS  PubMed  Google Scholar 

  6. Lin C, Liu B, Pu L, Sun Y, Xue Y, Chang M, Li X, Lu X, Chen R, Zhang J (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4(2):339–349

    Article  CAS  Google Scholar 

  7. Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220

    Article  CAS  Google Scholar 

  8. Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem Rev 106(10):4428–4453

    Article  CAS  PubMed  Google Scholar 

  9. Du X, Bai X, Xu L, Yang L (2020) Visible-light activation of persulfate by TiO2/g-C3N4 photocatalyst toward efficient degradation of micropollutants. Chem Eng J 384:123–245

    Article  CAS  Google Scholar 

  10. Chunling CL, Yifeng G, Jiaoxia Z, Dan X, Hua F, Jiayong T, Chunli Z, Chanjuan Z, Yuqing L, Honggang L (2020) GO/TiO2 composites as a highly active photocatalyst for the degradation of methyl orange. J Mater Res 35(10):1307–1315

    Article  CAS  Google Scholar 

  11. Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun (Camb) 48(23):2858–2860

    Article  CAS  Google Scholar 

  12. Rokhsat E, Akhavan O (2016) Improving the photocatalytic activity of graphene oxide/ZnO nanorod films by UV irradiation. Appl Surf Sci 371:590–595

    Article  CAS  Google Scholar 

  13. Akhavan O, Choobtashani M, Ghaderi E (2012) Protein degradation and RNA efflux of viruses photocatalyzed by graphene−tungsten oxide composite under visible light. J Phys Chem C 116:9653–9659

    Article  CAS  Google Scholar 

  14. Cui L, Ding X, Wang Y, Shi H, Huang L, Zuo Y, Kang S (2017) Facile preparation of Z-scheme WO3/g-C3N4 composite photocatalyst with enhanced photocatalytic performance under visible light. Appl Surf Sci 391(Part B):202–210

    Article  CAS  Google Scholar 

  15. Ucun OK, Montazeri B, Alaton İA, Hanci TÖ (2010) Treatment of industrial contaminants with zero-valent iron- and zero-valent aluminiumactivated persulfate: a case study with 3,5-dichlorophenol and 2,4-dichloroaniline. Turk J Chem 45(2):269–281

    Article  CAS  Google Scholar 

  16. Anandan S, Miyauchi M (2012) Improved photocatalytic efficiency of a WO3 system by an efficient visible-light induced hole transfer. Chem Commun (Camb) 48(36):4323–4325

    Article  CAS  Google Scholar 

  17. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J-X, Yi J, Jiao Y-T, Li S-Y, Shi X-L, Sun K (2018) Preparation and application of water-soluble TiO2-ionic liquids hybrid nanomaterials. J Inorg Mater 33(5):577–581

    Article  Google Scholar 

  19. Ismael M (2020) Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe(III) doped TiO2 nanoparticles. J Environ Chem Eng 8(2):103676

    Article  CAS  Google Scholar 

  20. Alam U, Fleisch M, Kretschmer I, Bahnemann D, Muneer MJ (2017) One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: an efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Appl Catal B 218:758–769

    Article  CAS  Google Scholar 

  21. Fu J, Yu J, Jiang C, Cheng BJ (2018) g-C3N4-based heterostructured photocatalysts. Adv Energy Mater 8(3):1701503

    Article  CAS  Google Scholar 

  22. Yan S, Li Z, Zou ZJ (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  PubMed  Google Scholar 

  23. Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X (2012) Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys Chem Chem Phys 14(4):1455–1462

    Article  CAS  PubMed  Google Scholar 

  24. Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716

    Article  CAS  Google Scholar 

  25. Yu Q, Lin X, Li X, Chen J (2020) Photocatalytic Stille cross-coupling on gold/g-C3N4 nano-heterojunction. Chem Res Chin Univ 36(6):1013–1016

    Article  CAS  Google Scholar 

  26. Wang S, Zhan J, Chen K, Ali A, Zeng L, Zhao H, Hu W, Zhu L, Xu X (2020) Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction. ACS Sustain Chem Eng 8(22):8214–8222

    Article  CAS  Google Scholar 

  27. Li C, Wang Y, Li C, Xu S, Hou X, Wu P (2019) Simultaneously broadened visible light absorption and boosted intersystem crossing in platinum-doped graphite carbon nitride for enhanced photosensitization. ACS Appl Mater Interfaces 11(23):20770–20777

    Article  CAS  PubMed  Google Scholar 

  28. Liu R, Yang W, He G, Zheng W, Li M, Tao W, Tian M (2020) Ag-modified g-C3N4 prepared by a one-step calcination method for enhanced catalytic efficiency and stability. ACS Omega 5(31):19615–19624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu J, Long K-Z, Wang Y, Xue B, Li Y-XJ (2015) Fast and facile preparation of metal-doped g-C3N4 composites for catalytic synthesis of dimethyl carbonate. Appl Catal A 496:1–8

    Article  CAS  Google Scholar 

  30. Huang J, Li D, Li R, Zhang Q, Chen T, Liu H, Liu Y, Lv W, Liu GJ (2019) An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics. Chem Eng J 374:242–253

    Article  CAS  Google Scholar 

  31. Hu C, Hung WZ, Wang MS, Lu PJJ (2018) Phosphorus and sulfur codoped g-C3N4 as an efficient metal-free photocatalyst. Carbon 127:374–383

    Article  CAS  Google Scholar 

  32. Sumathi M, Prakasam A, Anbarasan PM (2020) Fabrication of ultrathin nanosheets of graphitic carbon nitride heterojunction with spherical shaped Bi2O3 nanoparticles for high performance visible light photocatalyst. J Cluster Sci 31(1):277–286

    Article  CAS  Google Scholar 

  33. Fathi E, Derakhshanfard F, Gharbani P, Ghazi-Tabatabaei Z (2020) Facile synthesis of MgO/C3N4 nanocomposite for removal of reactive orange 16 under visible light. J Inorg Organomet Polym Mater 30(6):2234–2240

    Article  CAS  Google Scholar 

  34. Praus P, Lang J, Martaus A, Svoboda L, Matějka V, Kormunda M, Šihor M, Reli M, Kočí K (2019) Composites of BiVO4 and g-C3N4: synthesis, properties and photocatalytic decomposition of azo dye AO7 and nitrous oxide. J Inorg Organomet Polym Mater 29(4):1219–1234

    Article  CAS  Google Scholar 

  35. Jo W-K, Selvam NCS (2015) Enhanced visible light-driven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite. J Hazard Mater 229:462–470

    Article  CAS  Google Scholar 

  36. Zhang J, Li J, Liu X (2021) Ternary nanocomposite ZnO–g-C3N4–GO for enhanced photocatalytic degradation of RhB. Opt Mater 119:111351

    Article  CAS  Google Scholar 

  37. Liu Q, Zhang S, Li E, Zhang Y, Xia S (2019) Facile fabrication of Fe2O3/nitrogen deficient g-C3N4−x composite catalysts with enhanced photocatalytic performances. J Wuhan Univ Technol Mater Sci Ed 34(5):1018–1023

    Article  CAS  Google Scholar 

  38. Shen J, Li Y, Zhao H, Pan K, Li X, Qu Y, Wang G, Wang D (2019) Modulating the photoelectrons of g-C3N4 via coupling MgTi2O5 as appropriate platform for visible-light-driven photocatalytic solar energy conversion. Nano Res 12(8):1931–1936

    Article  CAS  Google Scholar 

  39. Zhao Z, Sun Y, Dong FJ (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1):15–37

    Article  CAS  PubMed  Google Scholar 

  40. Gu X, Li C, Yuan S, Ma M, Qiang Y, Zhu J (2016) ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 27(40):402001

    Article  PubMed  CAS  Google Scholar 

  41. Mclaren A, Valdes-Solis T, Li G, Tsang SC (2016) Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc 131(35):12540–12541

    Article  CAS  Google Scholar 

  42. Akhavan O (2010) Graphene nanomesh by ZnO nanorod. ACS Nano 4(7):4174–4180

    Article  CAS  PubMed  Google Scholar 

  43. Guo Y, Wang H, He C, Qiu L, Yang XC (2009) Uniform carbon-coated ZnO nanorods: microwave-assisted preparation, cytotoxicity, and photocatalytic activity. Langmuir 25(8):4678–4684

    Article  CAS  PubMed  Google Scholar 

  44. Nourmohammadi A, Rahighi R, Akhavan O, Moshfegh A (2014) Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J Alloys Compd 612:380–385

    Article  CAS  Google Scholar 

  45. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. https://doi.org/10.1155/2018/1062562

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jiao Y, Zhang J, Liu S, Liang Y, Li S, Zhou H, Zhang JJ (2018) The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci Adv Mater 10(12):1706–1713

    Article  CAS  Google Scholar 

  47. Zhang J, Li P, Zhang Z, Wang X, Tang J, Liu H, Shao Q, Ding T, Umar A, Guo ZJ (2019) Solvent-free graphene liquids: promising candidates for lubricants without the base oil. J Colloid Interface Science 542:159–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the supports from the Special fund of Shaanxi Provincial Education Department (16JK1612), the Open Project of Zhenjiang Key Laboratory of Marine Functional Thin Film Materials High Technology Research (ZHZ2019008), Key Research and Development Project of Shaanxi Province (2017GY-180) and Provincial College Students Innovation and Entrepreneurship Program (S202010705115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunling Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1101 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Su, J., Chen, Z. et al. Photocatalytic oxidative degradation of methyl orange by a novel g-C3N4@ZnO based on graphene oxide composites with ternary heterojunction construction. Reac Kinet Mech Cat 135, 1651–1664 (2022). https://doi.org/10.1007/s11144-022-02200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02200-2

Keywords

Navigation