Skip to main content
Log in

Preparation of graphene–ZnO composite with enhanced photocatalytic performance

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

A composite photocatalyst of zinc oxide (ZnO) nanoparticles decorated with different content of reduced graphene oxide (rGO) was prepared via a simple and facile one-step method in this paper. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectra, and UV–Vis diffuse reflection spectroscopy (UV–Vis DRS) were used to characterize the crystal structure, morphology and optical properties of the rGO–ZnO composite photocatalyst. The photocatalytic properties of the composites were investigated using methyl orange (MO), a typical orange compound, as a test pollutant. The results showed that rGO–ZnO composites displayed significantly enhanced photocatalytic activity in MO degradation than pure ZnO, and the pseudo-first-order kinetic constant on the optimal rGO–ZnO composite was 14 times as great as that on pure ZnO. The enhanced photocatalytic ability of the rGO-ZnO composites was mainly benefited from the high specific surface area and high conductivity of rGO, which facilitated efficient charge separation in the rGO-ZnO nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou M, Yang T, Hu W, He X, Xie J, Wang P, Jia K, Liu X (2019) Scalable fabrication of metallopolymeric superstructures for highly efficient removal of methylene blue. Nanomaterials 9:1001. https://doi.org/10.3390/nano9071001

    Article  CAS  Google Scholar 

  2. Damkale SR, Arbuj SS, Umarji GG, Panmand RP, Khore SK, Sonawane RS, Rane SB, Kale BB (2019) Two-dimensional hexagonal SnS2 nanostructures for photocatalytic hydrogen generation and dye degradation. Sustain Energy Fuels 3:3406–3414. https://doi.org/10.1039/c9se00235a

    Article  CAS  Google Scholar 

  3. Mohammed AM, Mohtar SS, Aziz F, Mhamad SA, Aziz M (2021) Review of various strategies to boost the photocatalytic activity of the cuprous oxide-based photocatalyst. J Environ Chem Eng 9:105138. https://doi.org/10.1016/j.jece.2021.105138

    Article  CAS  Google Scholar 

  4. Zhang B, Cao S, Du M, Ye X, Wang Y, Ye J (2019) Titanium dioxide (TiO2) mesocrystals: synthesis, growth mechanisms and photocatalytic properties. Catalysts 9:91. https://doi.org/10.3390/catal9010091

    Article  CAS  Google Scholar 

  5. Li H, Meng F, Gong J, Fan Z, Qin R (2018) Template-free hydrothermal synthesis, mechanism, and photocatalytic properties of core–shell CeO2 nanospheres. Electron Mater Lett 14:474–487. https://doi.org/10.1007/s13391-018-0049-7

    Article  CAS  Google Scholar 

  6. Qi Y, Meador WE, Xiong J, Abbaszadeh M, Thirumala RVKG, Delcamp JH, Kundu S, Hill GA Jr, Dai Q (2021) Structural, optical, photocatalytic, and optoelectronic properties of Zn2SnO4 nanocrystals prepared by hydrothermal method. Nanotechnology 32:145702. https://doi.org/10.1088/1361-6528/abd509

    Article  CAS  Google Scholar 

  7. Han W, Kim J, Park HH (2019) Control of electrical conductivity of highly stacked zinc oxide nanocrystals by ultraviolet treatment. Sci Rep 9:6244. https://doi.org/10.1038/s41598-019-42102-3

    Article  CAS  Google Scholar 

  8. Aydin EB (2021) Preparation, characterization and immobilization of Ag-doped ZnO-nanorods into Ca and Cu alginate beads and their application in the photodegradation of methylene blue. ChemistrySelect 6:11653–11663. https://doi.org/10.1002/slct.202102863

    Article  CAS  Google Scholar 

  9. Esgin H, Caglar Y, Caglar M (2022) Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC. J Alloys Compd 890:161848. https://doi.org/10.1016/j.jallcom.2021.161848

    Article  CAS  Google Scholar 

  10. Šutka A, Käämbre T, Pärna R, Juhnevica I, Maiorov M, Joost U, Kisand V (2016) Co doped ZnO nanowires as visible light photocatalysts. Solid State Sci 56:54–62. https://doi.org/10.1016/j.solidstatesciences.2016.04.008

    Article  CAS  Google Scholar 

  11. Yang X, Qiu L, Luo X (2018) ZIF-8 derived Ag-doped ZnO photocatalyst with enhanced photocatalytic activity. RSC Adv 8:4890–4894. https://doi.org/10.1039/C7RA13351K

    Article  CAS  Google Scholar 

  12. Jung H, Pham T-T, Shin EW (2019) Effect of g-C3N4 precursors on the morphological structures of g-C3N4/ZnO composite photocatalysts. J Alloys Compd 788:1084–1092. https://doi.org/10.1016/j.jallcom.2019.03.006

    Article  CAS  Google Scholar 

  13. Han F, Song Z, Nawaz MH, Dai M, Han D, Han L, Fan Y, Xu J, Han D, Niu L (2019) MoS2/ZnO-heterostructures-based label-free, visible-light-excited photoelectrochemical sensor for sensitive and selective determination of synthetic antioxidant propyl gallate. Anal Chem 91:10657–10662. https://doi.org/10.1021/acs.analchem.9b01889

    Article  CAS  Google Scholar 

  14. Liu Y, Li G, Mi R, Deng C, Gao P (2014) An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis. Sens Actuators B Chem 191:537–544. https://doi.org/10.1016/j.snb.2013.10.068

    Article  CAS  Google Scholar 

  15. Zhou T, Wang J, Chen S, Bai J, Li J, Zhang Y, Li L, Xia L, Rahim M, Xu Q, Zhou B (2020) Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl Catal B-Environ 267:118599. https://doi.org/10.1016/j.apcatb.2020.118599

    Article  CAS  Google Scholar 

  16. Li J, Yuan H, Li J, Zhang W, Liu Y, Liu N, Cao H, Jiao Z (2021) The significant role of the chemically bonded interfaces in BiVO4/ZnO heterostructures for photoelectrochemical water splitting. Appl Catal B-Environ 285:119833. https://doi.org/10.1016/j.apcatb.2020.119833

    Article  CAS  Google Scholar 

  17. Zhang Y, Xu J, Xu P, Zhu Y, Chen X, Yu W (2010) Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance. Nanotechnology 21:285501. https://doi.org/10.1088/0957-4484/21/28/285501

    Article  CAS  Google Scholar 

  18. Tian H, Liu M, Zheng W (2018) Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Appl Catal B-Environ 225:468–476. https://doi.org/10.1016/j.apcatb.2017.12.019

    Article  CAS  Google Scholar 

  19. Zhang Y, Park M, Kim H-Y, Park S-J (2016) In-situ synthesis of graphene oxide/BiOCl heterostructured nanofibers for visible-light photocatalytic investigation. J Alloys Compd 686:106–114. https://doi.org/10.1016/j.jallcom.2016.06.004

    Article  CAS  Google Scholar 

  20. Chandu B, Kurmarayuni CM, Kurapati S, Bollikolla HB (2020) Green and economical synthesis of graphene-silver nanocomposite exhibiting excellent photocatalytic efficiency. Carbon Lett 30:225–233. https://doi.org/10.1007/s42823-019-00091-3

    Article  Google Scholar 

  21. Xu S, Fu L, Pham TSH, Yu A, Han F, Chen L (2015) Preparation of ZnO flower/reduced graphene oxide composite with enhanced photocatalytic performance under sunlight. Ceram Int 41:4007–4013. https://doi.org/10.1016/j.ceramint.2014.11.086

    Article  CAS  Google Scholar 

  22. Chen Y-L, Zhang C-E, Deng C, Fei P, Zhong M, Su B-T (2013) Preparation of ZnO/GO composite material with highly photocatalytic performance via an improved two-step method. Chin Chem Lett 24:518–520. https://doi.org/10.1016/j.cclet.2013.03.034

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  24. Hsu KC, Chen DH (2014) Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Res Lett 9:484. https://doi.org/10.1186/1556-276x-9-484

    Article  Google Scholar 

  25. Wang H, Wang L, Qu C, Su Y, Yu S, Zheng W, Liu Y (2011) Photovoltaic properties of graphene oxide sheets beaded with ZnO nanoparticles. J Solid State Chem 184:881–887. https://doi.org/10.1016/j.jssc.2011.02.025

    Article  CAS  Google Scholar 

  26. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142. https://doi.org/10.1021/cm900395k

    Article  CAS  Google Scholar 

  27. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. https://doi.org/10.1038/nnano.2009.58

    Article  CAS  Google Scholar 

  28. Khan M, Al-Marri AH, Khan M, Shaik MR, Mohri N, Adil SF, Kuniyil M, Alkhathlan HZ, Al-Warthan A, Tremel W, Tahir MN, Siddiqui MRH (2015) Green approach for the effective reduction of graphene oxide using Salvadora persica L. root (miswak) extract. Nanoscale Res Lett 10:281. https://doi.org/10.1186/s11671-015-0987-z

    Article  CAS  Google Scholar 

  29. Zhang Y, Chen Z, Liu S, Xu Y-J (2013) Size effect induced activity enhancement and anti-photocorrosion of reduced graphene oxide/ZnO composites for degradation of organic dyes and reduction of Cr(VI) in water. Appl Catal B-Environ 140–141:598–607. https://doi.org/10.1016/j.apcatb.2013.04.059

    Article  CAS  Google Scholar 

  30. Qazi SJS, Rennie AR, Cockcroft JK, Vickers M (2009) Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles. J Colloid Interface Sci 338:105–110. https://doi.org/10.1016/j.jcis.2009.06.006

    Article  CAS  Google Scholar 

  31. Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens Actuators B Chem 219:94–99. https://doi.org/10.1016/j.snb.2015.04.119

    Article  CAS  Google Scholar 

  32. Wang F, Zhang K (2011) Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J Mol Catal A Chem 345:101–107. https://doi.org/10.1016/j.molcata.2011.05.026

    Article  CAS  Google Scholar 

  33. Fu D, Han G, Chang Y, Dong J (2012) The synthesis and properties of ZnO-graphene nano hybrid for photodegradation of organic pollutant in water. Mater Chem Phys 132:673–681. https://doi.org/10.1016/j.matchemphys.2011.11.085

    Article  CAS  Google Scholar 

  34. Park H, Lee KH, Kim YB, Ambade SB, Noh SH, Eom W, Hwang JY, Lee WJ, Huang J, Han TH (2018) Dynamic assembly of liquid crystalline graphene oxide gel fibers for ion transport. Sci Adv 4:eaau2104. https://doi.org/10.1126/sciadv.aau2104

    Article  CAS  Google Scholar 

  35. Zhang L, Zhang X, Zhang G, Zhang Z, Liu S, Li P, Liao Q, Zhao Y, Zhang Y (2015) Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv 5:10197–10203. https://doi.org/10.1039/c4ra12591f

    Article  CAS  Google Scholar 

  36. Liu X, Pan L, Zhao Q, Lv T, Zhu G, Chen T, Lu T, Sun Z, Sun C (2012) UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183:238–243. https://doi.org/10.1016/j.cej.2011.12.068

    Article  CAS  Google Scholar 

  37. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B-Environ 101:382–387. https://doi.org/10.1016/j.apcatb.2010.10.007

    Article  CAS  Google Scholar 

  38. Chen Y, Huang W, He D, Situ Y, Huang H (2014) Construction of heterostructured g-C3N4/Ag/TiO2 microspheres with enhanced photocatalysis performance under visible-light irradiation. ACS Appl Mater Interfaces 6:14405–14414. https://doi.org/10.1021/am503674e

    Article  CAS  Google Scholar 

  39. Huang H, Liu K, Zhang Y, Chen K, Zhang Y, Tian N (2014) Tunable 3D hierarchical graphene–BiOI nanoarchitectures: their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv 4:49386–49394. https://doi.org/10.1039/C4RA07533A

    Article  CAS  Google Scholar 

  40. Bilgin Simsek E, Kilic B, Asgin M, Akan A (2018) Graphene oxide based heterojunction TiO2–ZnO catalysts with outstanding photocatalytic performance for bisphenol-A, ibuprofen and flurbiprofen. J Ind Eng Chem 59:115–126. https://doi.org/10.1016/j.jiec.2017.10.014

    Article  CAS  Google Scholar 

  41. Wang H-J, Sun Y-Y, Wang C-F, Cao Y (2012) Controlled synthesis, cytotoxicity and photocatalytic comparison of ZnO films photocatalysts supported on aluminum matrix. Chem Eng J 198–199:154–162. https://doi.org/10.1016/j.cej.2012.05.088

    Article  CAS  Google Scholar 

  42. Dai K, Lu L, Liang C, Dai J, Zhu G, Liu Z, Liu Q, Zhang Y (2014) Graphene oxide modified ZnO nanorods hybrid with high reusable photocatalytic activity under UV-LED irradiation. Mater Chem Phys 143:1410–1416. https://doi.org/10.1016/j.matchemphys.2013.11.055

    Article  CAS  Google Scholar 

  43. He J, Niu C, Yang C, Wang J, Su X (2014) Reduced graphene oxide anchored with zinc oxide nanoparticles with enhanced photocatalytic activity and gas sensing properties. RSC Adv 4:60253–60259. https://doi.org/10.1039/c4ra12707b

    Article  CAS  Google Scholar 

  44. Ranjith KS, Manivel P, Rajendrakumar RT, Uyar T (2017) Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem Eng J 325:588–600. https://doi.org/10.1016/j.cej.2017.05.105

    Article  CAS  Google Scholar 

  45. Ong CB, Mohammad AW, Ng LY, Mahmoudi E, Azizkhani S, Hayati Hairom NH (2017) Solar photocatalytic and surface enhancement of ZnO/rGO nanocomposite: degradation of perfluorooctanoic acid and dye. Process Saf Environ Prot 112:298–307. https://doi.org/10.1016/j.psep.2017.04.031

    Article  CAS  Google Scholar 

  46. Ramos PG, Flores E, Luyo C, Sánchez LA, Rodriguez J (2019) Fabrication of ZnO-RGO nanorods by electrospinning assisted hydrothermal method with enhanced photocatalytic activity. Mater Today Commun 19:407–412. https://doi.org/10.1016/j.mtcomm.2019.03.010

    Article  CAS  Google Scholar 

  47. Prabhu S, Megala S, Harish S, Navaneethan M, Maadeswaran P, Sohila S, Ramesh R (2019) Enhanced photocatalytic activities of ZnO dumbbell/reduced graphene oxide nanocomposites for degradation of organic pollutants via efficient charge separation pathway. Appl Surf Sci 487:1279–1288. https://doi.org/10.1016/j.apsusc.2019.05.086

    Article  CAS  Google Scholar 

  48. Nguyen CH, Tran ML, Tran TTV, Juang R-S (2020) Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep Purif Technol 232:115962. https://doi.org/10.1016/j.seppur.2019.115962

    Article  CAS  Google Scholar 

  49. Elumalai N, Prabhu S, Selvaraj M, Shanavas S, Navaneethan M, Harish S, Ramu P, Ramesh R (2021) Investigation on synergistic effect of rGO and carbon quantum dots-embedded ZnO hollow spheres for improved photocatalytic aqueous pollutant removal process. J Mater Sci Mater Electron 32:28633–28647. https://doi.org/10.1007/s10854-021-07239-w

    Article  CAS  Google Scholar 

  50. Gao P, Li A, Sun DD, Ng WJ (2014) Effects of various TiO2 nanostructures and graphene oxide on photocatalytic activity of TiO2. J Hazard Mater 279:96–104. https://doi.org/10.1016/j.jhazmat.2014.06.061

    Article  CAS  Google Scholar 

  51. Verma N, Ananthakrishnan R (2019) Riboflavin-immobilized CeO2–RGO nanohybrid as a potential photoredox catalyst for enhanced removal of organic pollutants under visible light. J Phys Chem C 124:404–415. https://doi.org/10.1021/acs.jpcc.9b08326

    Article  CAS  Google Scholar 

  52. Qiu B, Li Q, Shen B, Xing M, Zhang J (2016) Stöber-like method to synthesize ultradispersed Fe3O4 nanoparticles on graphene with excellent Photo-Fenton reaction and high-performance lithium storage. Appl Catal B-Environ 183:216–223. https://doi.org/10.1016/j.apcatb.2015.10.053

    Article  CAS  Google Scholar 

  53. Wu M, Gu L, Wang Q, Wang C, Zhang H (2018) Interfacial assembly of robust TiO2 nanosheets onto silica-modified reduced graphene oxide for highly efficient degradation of organic dyes. ChemNanoMat 4:387–393. https://doi.org/10.1002/cnma.201700369

    Article  CAS  Google Scholar 

  54. Li X, Zheng S, Zhang C, Hu C, Chen F, Sun Y, Duo S, Zhang R, Hu Q, Li W, Kang Y (2017) Synergistic promotion of photocatalytic performance by core@shell structured TiO2/Au@rGO ternary photocatalyst. Mol Catal 438:55–65. https://doi.org/10.1016/j.mcat.2017.05.016

    Article  CAS  Google Scholar 

  55. Kubo W, Tatsuma T (2006) Mechanisms of photocatalytic remote oxidation. J Am Chem Soc 128:16034–16035. https://doi.org/10.1021/ja066041y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanli Liu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 305 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liu, Y. Preparation of graphene–ZnO composite with enhanced photocatalytic performance. Carbon Lett. 32, 1265–1275 (2022). https://doi.org/10.1007/s42823-022-00349-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00349-3

Keywords

Navigation