Skip to main content
Log in

Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The composites of BiVO4 and g-C3N4 (BiVO4/g-C3N4) were synthesised by the calcination of a mixture of monoclinic BiVO4 and bulk g-C3N4 at 300 °C for 4 h. Both components were previously prepared by the precipitation of Bi(NO3)3 with NH4VO3 and annealing of melamine. X-ray photoelectron spectroscopy (XPS) identified the presence of C–O and C=O bonds as well as metal nitrides which confirmed the formation of a heterojunction between BiVO4 and g-C3N4. The heterojunction was also indicated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy. The band gap energies were determined at 2.42–2.46 eV of BiVO4 and 2.75–2.82 eV of bulk g-C3N4. The specific surface area was 23–28 m2 g−1 of the composites and 6 m2 g−1 and 35 m2 g−1 of pure BiVO4 and g-C3N4, respectively. The photocatalytic activity of the composites was investigated by the decomposition of Acid Orange 7 (AO7) and nitrous oxide. In case of AO7, the BiVO4/g-C3N4 (1:3) composite was the most active one and the main role in the reaction was played by photoinduced holes forming hydroxyl radicals. At the decomposition of N2O, the most important species were the photoinduced electrons and the BiVO4/g-C3N4 (1:1) composite was the most active photocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.M. Yu, M.L. Cohen, E.E. Haller, W.L. Hansen, A.Y. Liu, I.C. Wu, Observation of crystalline C3N4. Phys. Rev. B 49(7), 5034–5037 (1994). https://doi.org/10.1103/PhysRevB.49.5034

    Article  CAS  Google Scholar 

  2. E. Kroke, Novel group 14 nitrides. Coord. Chem. Rev. 248(5–6), 493–532 (2004). https://doi.org/10.1016/j.ccr.2004.02.001

    Article  CAS  Google Scholar 

  3. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  4. P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: synthesis, characterization and photocatalytic decomposition of nitrous oxide. Mater. Chem. Phys. 193, 438–446 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.008

    Article  CAS  Google Scholar 

  5. G. Dong, Y. Zhang, Q. Pan, J. Qiu, A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20, 33–50 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.04.002

    Article  CAS  Google Scholar 

  6. J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72–123 (2017). https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  7. H. Li, L. Wang, Y. Liu, J. Lei, J. Zhang, Mesoporous graphitic carbon nitride materials: synthesis and modifications. Res. Chem. Intermed. 42(5), 3979–3998 (2015). https://doi.org/10.1007/s11164-015-2294-9

    Article  CAS  Google Scholar 

  8. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  CAS  Google Scholar 

  9. L. Wang, C. Wang, X. Hu, H. Xue, H. Pang, Metal/graphitic carbon nitride composites: synthesis, structures, and applications. Chemistry 11(23), 3305–3328 (2016). https://doi.org/10.1002/asia.201601178

    Article  CAS  Google Scholar 

  10. W.-J. Ong (2017) 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? Front. Mater. https://doi.org/10.3389/fmats.2017.00011

    Article  Google Scholar 

  11. J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 8(3), 1701503 (2018). https://doi.org/10.1002/aenm.201701503

    Article  CAS  Google Scholar 

  12. D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017). https://doi.org/10.1016/j.apcatb.2017.01.061

    Article  CAS  Google Scholar 

  13. S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27(13), 2150–2176 (2015). https://doi.org/10.1002/adma.201500033

    Article  CAS  PubMed  Google Scholar 

  14. G. Mamba, A.K. Mishra, Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B 198, 347–377 (2016). https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  15. S. Kumar, S. Karthikeyan, A. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts 8(2), 74 (2018). https://doi.org/10.3390/catal8020074

    Article  CAS  Google Scholar 

  16. K. Kočí, M. Reli, I. Troppová, M. Šihor, J. Kupková, P. Kustrowski, P. Praus, Photocatalytic decomposition of N2O over TiO2/g-C3N4 photocatalysts heterojunction. Appl. Surf. Sci. 396, 1685–1695 (2017). https://doi.org/10.1016/j.apsusc.2016.11.242

    Article  CAS  Google Scholar 

  17. M. Reli, P. Huo, M. Sihor, N. Ambrozova, I. Troppova, L. Matejova, J. Lang, L. Svoboda, P. Kustrowski, M. Ritz, P. Praus, K. Koci, Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J. Phys. Chem. A 120(43), 8564–8573 (2016). https://doi.org/10.1021/acs.jpca.6b07236

    Article  CAS  PubMed  Google Scholar 

  18. P. Praus, L. Svoboda, R. Dvorský, M. Reli, M. Kormunda, P. Mančík, Synthesis and properties of nanocomposites of WO3 and exfoliated g-C3 N 4. Ceram. Int. 43(16), 13581–13591 (2017). https://doi.org/10.1016/j.ceramint.2017.07.067

    Article  CAS  Google Scholar 

  19. M. Reli, L. Svoboda, M. Šihor, I. Troppová, J. Pavlovský, P. Praus, K. Kočí, Photocatalytic decomposition of N2O over g-C3N4/WO3 photocatalysts. Environ. Sci. Pollut. Res. (2017). https://doi.org/10.1007/s11356-017-0723-6

    Article  Google Scholar 

  20. P. Praus, L. Svoboda, R. Dvorský, J.L. Faria, C.G. Silva, M. Reli, Nanocomposites of SnO2 and g-C3N4: preparation, characterization and photocatalysis under visible LED irradiation. Ceram. Int. 44(4), 3837–3846 (2018). https://doi.org/10.1016/j.ceramint.2017.11.170

    Article  CAS  Google Scholar 

  21. J. Cheng, X. Yan, Q. Mo, B. Liu, J. Wang, X. Yang, L. Li, Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 43(1), 301–307 (2017). https://doi.org/10.1016/j.ceramint.2016.09.156

    Article  CAS  Google Scholar 

  22. M. Ou, Q. Zhong, S. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). https://doi.org/10.1007/s10971-014-3454-x

    Article  CAS  Google Scholar 

  23. J. Zhang, F. Ren, M. Deng, Y. Wang, Enhanced visible-light photocatalytic activity of a g-C3N4/BiVO4 nanocomposite: a first-principles study. Phys. Chem. Chem. Phys. 17(15), 10218–10226 (2015). https://doi.org/10.1039/c4cp06089j

    Article  CAS  PubMed  Google Scholar 

  24. N. Tian, H. Huang, Y. He, Y. Guo, T. Zhang, Y. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44(9), 4297–4307 (2015). https://doi.org/10.1039/c4dt03905j

    Article  CAS  PubMed  Google Scholar 

  25. R. Venkatesan, S. Velumani, A. Kassiba, Mechanochemical synthesis of nanostructured BiVO4 and investigations of related features. Mater. Chem. Phys. 135(2–3), 842–848 (2012). https://doi.org/10.1016/j.matchemphys.2012.05.068

    Article  CAS  Google Scholar 

  26. A. Zhang, J. Zhang, Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett. 63(22), 1939–1942 (2009). https://doi.org/10.1016/j.matlet.2009.06.013

    Article  CAS  Google Scholar 

  27. S. Kunduz, G.S. Pozan Soylu, Highly active BiVO4 nanoparticles: the enhanced photocatalytic properties under natural sunlight for removal of phenol from wastewater. Sep. Purif. Technol. 141, 221–228 (2015). https://doi.org/10.1016/j.seppur.2014.11.036

    Article  CAS  Google Scholar 

  28. J. Liu, H. Wang, S. Wang, H. Yan, Hydrothermal preparation of BiVO4 powders. Mater. Sci. Eng. 104(1–2), 36–39 (2003). https://doi.org/10.1016/s0921-5107(03)00264-2

    Article  Google Scholar 

  29. H. Li, G. Liu, X. Duan, Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Mater. Chem. Phys. 115(1), 9–13 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.014

    Article  CAS  Google Scholar 

  30. W. Ma, Z. Li, W. Liu, Hydrothermal preparation of BiVO4 photocatalyst with perforated hollow morphology and its performance on methylene blue degradation. Ceram. Int. 41(3), 4340–4347 (2015). https://doi.org/10.1016/j.ceramint.2014.11.123

    Article  CAS  Google Scholar 

  31. M. Shang, W. Wang, L. Zhou, S. Sun, W. Yin, Nanosized BiVO4 with high visible-light-induced photocatalytic activity: ultrasonic-assisted synthesis and protective effect of surfactant. J. Hazard. Mater. 172(1), 338–344 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.017

    Article  CAS  PubMed  Google Scholar 

  32. W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173(1–3), 194–199 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.068

    Article  CAS  PubMed  Google Scholar 

  33. U.M. García-Pérez, S. Sepúlveda-Guzmán, A. Martínez-de la Cruz, Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation. Solid State Sci. 14(3), 293–298 (2012). https://doi.org/10.1016/j.solidstatesciences.2011.12.008

    Article  CAS  Google Scholar 

  34. S.S. Dunkle, R.J. Helmich, K.S. Suslick, BiVO4 as a visible-light photocatalyst prepared by ultrasonic spray pyrolysis. J. Phys. Chem. C 113(28), 11980–11983 (2009). https://doi.org/10.1021/jp903757x

    Article  CAS  Google Scholar 

  35. J. Pérez-Ramírez, F. Kapteijn, K. Schöffel, J.A. Moulijn, Formation and control of N2O in nitric acid production. Appl. Catal. B 44(2), 117–151 (2003). https://doi.org/10.1016/s0926-3373(03)00026-2

    Article  Google Scholar 

  36. K. Kočí, S. Krejčíková, O. Šolcová, L. Obalová, Photocatalytic decomposition of N2O on Ag-TiO2. Catal. Today 191(1), 134–137 (2012). https://doi.org/10.1016/j.cattod.2012.01.021

    Article  CAS  Google Scholar 

  37. S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C 31, 1–35 (2017). https://doi.org/10.1016/j.jphotochemrev.2017.01.005

    Article  CAS  Google Scholar 

  38. B. Bethi, S.H. Sonawane, B.A. Bhanvase, S.P. Gumfekar, Nanomaterials-based advanced oxidation processes for wastewater treatment: a review. Chem. Eng. Process. 109, 178–189 (2016). https://doi.org/10.1016/j.cep.2016.08.016

    Article  CAS  Google Scholar 

  39. L. Ming, H. Yue, L. Xu, F. Chen, Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A 2(45), 19145–19149 (2014). https://doi.org/10.1039/C4TA04041D

    Article  CAS  Google Scholar 

  40. O. Man, Q. Zhong, J. Zhang, Synthesis and characterization of g-C3N4/BiVO4 composite photocatalysts with improved visible-light-driven photocatalytic performance. J. Sol–Gel. Sci. Technol. 72(3), 443–454 (2014). https://doi.org/10.1007/s10971-014-3454-x)

    Article  Google Scholar 

  41. I. Troppová, M. Šihor, M. Reli, M. Ritz, P. Praus, K. Kočí, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 430, 335–347 (2018). https://doi.org/10.1016/j.apsusc.2017.06.299

    Article  CAS  Google Scholar 

  42. J. Lang, L. Matějová, I. Troppová, L. Čapek, J. Endres, S. Daniš, Novel synthesis of ZrxTi1–xOn mixed oxides using titanyl sulphate and pressurized hot and supercritical fluids, and their photocatalytic comparison with sol-gel prepared equivalents. Mater. Res. Bull. 95, 95–103 (2017). https://doi.org/10.1016/j.materresbull.2017.07.023

    Article  CAS  Google Scholar 

  43. H. Fan, T. Jiang, H. Li, D. Wang, L. Wang, J. Zhai, D. He, P. Wang, T. Xie, Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C 116(3), 2425–2430 (2012). https://doi.org/10.1021/jp206798d

    Article  CAS  Google Scholar 

  44. A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121(49), 11459–11467 (1999). https://doi.org/10.1021/ja992541y

    Article  CAS  Google Scholar 

  45. P. Wu, J. Wang, J. Zhao, L. Guo, F.E. Osterloh, Structure defects in g-C3N4 limit visible light driven hydrogen evolution and photovoltage. J. Mater. Chem. A 2(47), 20338–20344 (2014). https://doi.org/10.1039/c4ta04100c

    Article  CAS  Google Scholar 

  46. I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakis, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4. Appl. Surf. Sci. 358, 278–286 (2015). https://doi.org/10.1016/j.apsusc.2015.08.097

    Article  CAS  Google Scholar 

  47. T. Komatsu, The first synthesis and characterization of cyameluric high polymers. Macromol. Chem. Phys. 202(1), 19–25 (2001)

    Article  CAS  Google Scholar 

  48. R.L. Frost, K.L. Erickson, M.L. Weier, O. Carmody, Raman and infrared spectroscopy of selected vanadates. Spectrochim Acta A Mol Biomol Spectrosc 61(5), 829–834 (2005). https://doi.org/10.1016/j.saa.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  49. X. Meng, L. Zhang, H. Dai, Z. Zhao, R. Zhang, Y. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125(1–2), 59–65 (2011). https://doi.org/10.1016/j.matchemphys.2010.08.071

    Article  CAS  Google Scholar 

  50. J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80, 213–221 (2014). https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  51. L. Stagi, D. Chiriu, C.M. Carbonaro, R. Corpino, P.C. Ricci, Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 68, 84–92 (2016). https://doi.org/10.1016/j.diamond.2016.06.009

    Article  CAS  Google Scholar 

  52. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18(41), 4893 (2008). https://doi.org/10.1039/b800274f

    Article  CAS  Google Scholar 

  53. A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings. Surf. Sci. 601(4), 1153–1159 (2007). https://doi.org/10.1016/j.susc.2006.12.010

    Article  CAS  Google Scholar 

  54. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135(2–3), 167–175 (2004). https://doi.org/10.1016/j.elspec.2004.03.004

    Article  CAS  Google Scholar 

  55. E.A. Abdullah, A.H. Abdullah, Z. Zainal, M.Z. Hussein, T.K. Ban (2012) Synthesis and characterisation of Penta-Bismuth hepta-oxide nitrate, Bi5O7NO3, as a new adsorbent for methyl orange removal from an aqueous solution. e-J. Chem. 9 (4). https://doi.org/10.1155/2012/707853

  56. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257(3), 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.07.086

    Article  CAS  Google Scholar 

  57. L. Svoboda, P. Praus, M.J. Lima, M.J. Sampaio, D. Matýsek, M. Ritz, R. Dvorský, J.L. Faria, C.G. Silva, Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 100, 322–332 (2018). https://doi.org/10.1016/j.materresbull.2017.12.049

    Article  CAS  Google Scholar 

  58. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  59. Y. Zhang, Q. Pan, G. Chai, M. Liang, G. Dong, Q. Zhang, J. Qiu, Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine. Sci. Rep. 3, 1943 (2013). https://doi.org/10.1038/srep01943

    Article  PubMed  PubMed Central  Google Scholar 

  60. D.-K. Ma, M.-L. Guan, S.-S. Liu, Y.-Q. Zhang, C.-W. Zhang, Y.-X. He, S.-M. Huang, Controlled synthesis of olive-shaped Bi2S3/BiVO4 microspheres through a limited chemical conversion route and enhanced visible-light-responding photocatalytic activity. Dalton Trans. 41(18), 5581–5586 (2012). https://doi.org/10.1039/C2DT30099K

    Article  CAS  PubMed  Google Scholar 

  61. P.M. Wood, The potential diagram for oxygen at pH 7. Biochem. J. 253(1), 287–289 (1988). https://doi.org/10.1042/bj2530287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. K. Li, X. Zeng, S. Gao, L. Ma, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x/g-C3N4 heterojunctions: enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation. Nano Res. 9(7), 1969–1982 (2016). https://doi.org/10.1007/s12274-016-1088-8

    Article  CAS  Google Scholar 

  63. M. Rochkind, S. Pasternak, Y. Paz, Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20(1), 88–110 (2014). https://doi.org/10.3390/molecules20010088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. X. Chen, W. Wang, H. Xiao, C. Hong, F. Zhu, Y. Yao, Z. Xue, Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulfate. Chem. Eng. J. 193–194, 290–295 (2012). https://doi.org/10.1016/j.cej.2012.04.033

    Article  CAS  Google Scholar 

  65. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7), 3718–3723 (2012). https://doi.org/10.1021/am300812n

    Article  CAS  PubMed  Google Scholar 

  66. J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J. Yu, A review of direct Z-scheme photocatalysts. Small Methods 1(5), 1700080 (2017). https://doi.org/10.1002/smtd.201700080

    Article  CAS  Google Scholar 

  67. A. Kudo, H. Nagayoshi, Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor. Catal. Lett. 52, 109–111 (1998)

    Article  CAS  Google Scholar 

  68. Z. Zhang, M. Wang, W. Cui, H. Sui, Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 7(14), 8167–8177 (2017). https://doi.org/10.1039/c6ra27766g

    Article  CAS  Google Scholar 

  69. M. Ou, Q. Zhong, S. Zhang, L. Yu, Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloy. Compd. 626, 401–409 (2015). https://doi.org/10.1016/j.jallcom.2014.11.148

    Article  CAS  Google Scholar 

  70. J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). https://doi.org/10.1016/j.apcatb.2018.04.056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (project No. 16-10527S), the EU structural funding in Operational Program Research, Development and Education, Project No. CZ.02.1.01/0.0/0.0/16_019/0000853 “Institute of Environmental Technology—Excellent research” and by VŠB-Technical University of Ostrava (Project No. SP 2019/142). The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Praus.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praus, P., Lang, J., Martaus, A. et al. Composites of BiVO4 and g-C3N4: Synthesis, Properties and Photocatalytic Decomposition of Azo Dye AO7 and Nitrous Oxide. J Inorg Organomet Polym 29, 1219–1234 (2019). https://doi.org/10.1007/s10904-019-01085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01085-4

Keywords

Navigation